DOI QR코드

DOI QR Code

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead (Institute of Leather Engineering & Technology, University of Dhaka) ;
  • Uddin, Nizam (Nutrition and Food Engineering, Faculty of Allied Health Science, Daffodil International University) ;
  • Acter, Thamina (Department of Mathematical and Physical Sciences, Faculty of Sciences and Engineering, East West University) ;
  • Uddin, Md. Minhaz (Institute of Leather Engineering & Technology, University of Dhaka) ;
  • Chowdhury, A.M. Sarwaruddin (Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, University of Dhaka) ;
  • Bari, Md. Latiful (Food Analysis and Research laboratory, Center for Advance Research in Sciences, University of Dhaka) ;
  • Mustafa, Ahmad Ismail (Nutrition and Food Engineering, Faculty of Allied Health Science, Daffodil International University) ;
  • Shamsuddin, Sayed Md. (Institute of Leather Engineering & Technology, University of Dhaka)
  • 투고 : 2019.12.21
  • 심사 : 2020.10.06
  • 발행 : 2020.09.25

초록

In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.

키워드

참고문헌

  1. Ahmed, A.A., Sofy, A.R. and Sharaf, A.M.A. (2017), "Effectiveness of chitosan as naturally-derived antimicrobial to fulfill the needs of today's consumers looking for food without hazards of chemical preservatives", J. Microbiol. Res., 7, 55-67. https://doi.org/10.5923/j.microbiology.20170703.02
  2. Aksoy, A. and Kaplan, S. (2013), "Production and performance analysis of an antibacterial foot sweat pad", Fibers Polym., 14(2), 316-323. https://doi.org/10.1007/s12221-013-0316-z
  3. Ara, K., Hama, M., Akiba, S., Koike, K., Okisaka, K., Hagura, T., Kamiya, T. and Tomita, F. (2006), "Foot odor due to microbial metabolism and its control", Can. J. Microbiol., 52(4), 357-364. https://doi.org/10.1139/w05-130
  4. Aslan, A. (2013), "Improving the dyeing properties of vegetable tanned leathers using chitosan formate", Ekoloji, 22, 26-35. https://doi.org/10.5053/ekoloji.2013.864
  5. Bangyekan, C., Aht-Ong, D. and Srikulkit, K. (2006), "Preparation and properties evaluation of chitosancoated cassava starch films", Carbohydr. Polym., 63(1), 61-71. https://doi.org/10.1016/j.carbpol.2005.07.032
  6. Banon, E., Marcilla, A., Garcia, A.N., Martinez, P. and Leon, M. (2016), "Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis", Waste Manage., 48, 285-299. https://doi.org/10.1016/j.wasman.2015.10.012
  7. Bienkiewicz, K. (1981), Physical Chemistry of Leather Making, Krieger Publishing Company, Huntington, N.Y., USA.
  8. Billah, S.M.R. (2018), "Textile Coatings", Funct. Polym., 1-58.
  9. Boahin, J.O.B., Asubonteng, K. and Adu-Gyamfi, V.E. (2013), "Sanative measures against offensive odour that affect indigenous tanned leathers in Ghana", J. Sci. Technol., 33(1), 68-74. https://doi.org/10.4314/just.v33i1.7
  10. Burkinshaw, S.M. and Jarvis, A.N. (1996), "The use of chitosan in the dyeing of full chrome leather with reactive dyes", Dyes Pigm., 31(1), 35-52. https://doi.org/10.1016/0143-7208(95)00094-1
  11. De Jesus, A.P.O., Roxas-Villanueva, R.L. and Herrera, M.U. (2017), "Antimicrobial and water-triggered release characteristics of a copper sulfate-polyvinyl acetate adhesive composite", Proceedings of IOP Conference Series: Materials Science and Engineering, 201, 012007. https://doi.org/10.1088/1757-899X/201/1/012007
  12. Dev, V.G., Venugopal, J., Sudha, S., Deepika, G. and Ramakrishna, S. (2009), "Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye", Carbohydr. Polym., 75(4), 646-650. https://doi.org/10.1016/j.carbpol.2008.09.003
  13. Dey, S.C., Al-Amin, M., Rashid, T.U., Sultan, M.Z., Ashaduzzaman, M., Sarker, M. and Shamsuddin, S.M. (2016), "Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red", Int. J. Latest Res. Eng. Tech., 2, 52-62.
  14. Doyle, B.B., Bendit, E.G. and Blout, E.R. (1975), "Infrared spectroscopy of collagen and collagen-like polypeptides", Biopolymers, 14(5), 937-957. https://doi.org/10.1002/bip.1975.360140505
  15. El-Tahlawy, K.F., El-Bendary, M.A., Elhendawy, A.G. and Hudson, S.M. (2005), "The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan", Carbohydr. Polym., 60(4), 421-430. https://doi.org/10.1016/j.carbpol.2005.02.019
  16. Fernandes, I.P., Amaral, J.S., Pinto, V., Ferreira, M.J. and Barreiro, M.F. (2013), "Development of chitosanbased antimicrobial leather coatings", Carbohydr. Polym., 98(1), 1229-1235. https://doi.org/10.1016/j.carbpol.2013.07.030
  17. Furtado, G.T.F.D.S., Fideles, T.B., Cruz, R.D.C.A.L., Souza, J.W.D.L., Rodriguez Barbero, M.A. and Fook, M.V.L. (2018), "Chitosan/NaF Particles Prepared Via Ionotropic Gelation: Evaluation of Particles Size and Morphology", Mater. Res., 21. https://doi.org/10.1590/1980-5373-mr-2018-0101
  18. Gunister, E., Pestreli, D., Unlu, C.H., Atici, O. and Gungor, N. (2007), "Synthesis and characterization of chitosan-MMT biocomposite systems", Carbohydr. Polym., 67(3), 358-365. https://doi.org/10.1016/j.carbpol.2006.06.004
  19. Islam, M.M., Masum, S.M., Rahman, M.M., Molla, M.A.I., Shaikh, A.A. and Roy, S.K. (2011), "Preparation of chitosan from shrimp shell and investigation of its properties", Int. J. Basic Appl. Sci., 11, 77-80.
  20. Islam, M.N., Khan, M.N., Mallik, A.K. and Rahman, M.M. (2019), "Preparation of bio-inspired trimethoxysilyl group terminated poly(1-vinylimidazole)-modified-chitosan composite for adsorption of chromium (VI) ions", J. Hazard. Mater., 379, 120792. https://doi.org/10.1016/j.jhazmat.2019.120792
  21. Jennings, M.B., Alfieri, D., Kosinski, M. and Weinberg, J.M. (1999), "An investigator-blind study of the efficacy and safety of azithromycin versus cefadroxil in the treatment of skin and skin structure infections of the foot", The Foot, 9(2), 68-72. https://doi.org/10.1054/foot.1999.0521
  22. Johannesson, A., Larsson, G.U., Ramstrand, N., Turkiewicz, A., Wirehn, A.B. and Atroshi, I. (2009), "Incidence of lower-limb amputation in the diabetic and nondiabetic general population", Diabetes Care, 32(2), 275. https://doi.org/10.2337/dc08-1639
  23. Julkapli, N.M. and Md Akil, H. (2008), X-Ray Powder Diffraction (XRD) studies on kenaf dust filled chitosan bio-composites, Neutron and X-ray Scattering 2007.
  24. Kaygusuz, M.K., Meyer, M. and Aslan, A. (2017), "The Effect of $TiO_2-SiO_2$ Nanocomposite on the Performance Characteristics of Leather", Mater. Res., 20(4), 1103-1110. https://doi.org/10.1590/1980-5373-mr-2017-0180
  25. Kim, S., Kim, H.J., Choi, Y.M. and Jang, S.W. (2007), "Characteristics of non-plasticizer PVAc resin for wood products", J. Korean Wood Sci. Technol., 35(2), 61-68.
  26. Kumar, M.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H. and Domb, A.J. (2004), "Chitosan chemistry and pharmaceutical perspectives", Chem. Rev., 104(12), 6017-6084. https://doi.org/10.1021/cr030441b
  27. Liu, H., Zhao, Y., Cheng, S., Huang, N. and Leng, Y. (2012), "Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification", J. Appl. Polym. Sci., 124(4), 2641-2648. https://doi.org/10.1002/app.34889
  28. Liu, G., Luo, Q., Wang, H., Zhuang, W. and Wang, Y. (2015), "In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility", RSC Adv., 5(86), 70109-70116. https://doi.org/10.1039/C5RA11600G
  29. Luo, Q., Gao, H., Peng, L., Liu, G. and Zhang, Z. (2016), "Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather", J. Appl. Polym. Sci., 133(22). https://doi.org/10.1002/app.43465
  30. Lv, S.H., Yan, X.L. and Gao, R.J. (2011), "Preparation and properties of copolymer of methacrylic acid and acrylamide onto degraded chitosan initiated by HRP/H2O2/ACAC", Appl. Mech. Mater., 80, 396-399. https://doi.org/10.4028/www.scientific.net/AMM.80-81.396
  31. Marasigan, E.J.B., Roxas-Villanueva, R.M.L. and Herrera, M.U. (2019), "Antimicrobial property and watertriggered release characteristics of zinc sulphate-polyvinyl acetate adhesive blend", Journal of Physics: Conference Series, 1191, 012036. https://doi.org/10.1088/1742-6596/1191/1/012036
  32. Mark, H.F. (2014), Encyclopedia of Polymer Science and Technology, Wiley & Sons.
  33. Mohanasrinivasan, V., Mishra, M., Paliwal, J.S., Singh, S.K., Selvarajan, E., Suganthi, V. and Devi, C.S. (2014), "Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste", 3 Biotech, 4(2), 167-175. https://doi.org/10.1007/s13205-013-0140-6
  34. Monvisade, P. and Siriphannon, P. (2009), "Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption", Appl. Clay Sci., 42(3), 427-431. https://doi.org/10.1016/j.clay.2008.04.013
  35. Muzzarelli, R.A.A. (1977), Chapter 1 - Enzymic synthesis of chitin and chitosan, In: Chitin, (R.A.A. Muzzarelli), Pergamon, pp. 5-44.
  36. Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G. and Varaldo, P.E. (1990), "Antimicrobial properties of N-carboxybutyl chitosan", Antimicrob. Agents Chemother., 34(10), 2019-2023. https://doi.org/10.1128/AAC.34.10.2019
  37. Muzzarelli, R.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M. and Paoletti, M.G. (2012), "Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial", Carbohydr. Polym., 87(2), 995-1012. https://doi.org/10.1016/j.carbpol.2011.09.063
  38. Nagai, K., Domon, H., Oda, M., Shirai, T., Ohsumi, T., Terao, Y. and Arai, Y. (2017), "Antimicrobial activity of ethylene-vinyl acetate containing bioactive filler against oral bacteria", Dent. Mater. J., 36(6), 1881-1361. https://doi.org/10.4012/dmj.2016-321
  39. Nieto, J.M., Peniche-Covas, C. and Padro, G. (1991), "Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry", Thermochim. Acta, 176, 63-68. https://doi.org/10.1016/0040-6031(91)80260-P
  40. Orlita, A. (2003), "Microbial biodeterioration of leather and its control: a review", Int. Biodeterior. Biodegrad., 53(3), 157-163. https://doi.org/10.1016/S0964-8305(03)00089-1
  41. Padmanabhan, S.C., Hasim, S.A., Romero, M.C., Kerry, J. and Morris, M.A. (2015), "The modification of poly vinyl acetate (PVA) substrates and their improved antimicrobial activity for use in active packaging applications", J. Food Process. Technol., 6(9).
  42. Paris, J. (2000), "Adhesives for paper, board and foils", Int. J. Adhes. Adhes. 20(2): 89-90. https://doi.org/10.1016/S0143-7496(99)00052-4
  43. Payne, K.J. and Veis, A. (1988), "Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies", Biopolymers, 27(11), 1749-1760. https://doi.org/10.1002/bip.360271105
  44. Plavan, V. (2012), "Chrome tanning improvement by chitosan application", J. Soc. Leather Tech. Chemi., 96, 89-93.
  45. Qu, X., Wirsen, A. and Albertsson, A.C. (2000), "Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives", Polym., 41(13), 4841-4847. https://doi.org/10.1016/S0032-3861(99)00704-1
  46. Rebsamen, W. (1983), Adhesive Binding Library Books, Mekatronics Inc., NY, USA.
  47. Rinaudo, M. (2006), "Chitin and chitosan: Properties and applications", Prog. Polym. Sci., 31(7), 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  48. Sanchez-Navarro, M.M., Cuesta-Garrote, N., Aran-Ais, F. and Orgiles-Barcelo, C. (2011), "Microencapsulation of Melaleuca alternifolia (Tea Tree) Oil as Biocide for Footwear Applications", J. Dispersion Sci. Technol., 32(12), 1722-1727. https://doi.org/10.1080/01932691.2011.616126
  49. Santos, F.K.G.D., Silva, K.N.D.O., Xavier, T.D.N., Leite, R.H.D.L. and Aroucha, E.M.M. (2017), "Effect of the addition of carnauba wax on physicochemical properties of chitosan films", Mater. Res., 20, 479-484. https://doi.org/10.1590/1980-5373-mr-2016-1010
  50. Sedivka, P., Bomba, J., Bohm, M., and Boska, P. (2015), "Influence of temperature on the strength of bonded joints", BioResources, 10(3), 3999-4010.
  51. Sirvaityte, J., Siugzdaite, J. and Valeika, V. (2011), "Application of commercial essential oils of eucalyptus and lavender as natural preservative for leather tanning industry", Rev. Chim. (Bucharest, Rom.), 62, 884-893.
  52. Sousa, L.L.D., Ricci, V.P., Prado, D.G., Apolinario, R.C., Vercik, L.C.D.O., Rigo, E.C.D.S., Fernandes, M.C.D.S. and Mariano, N.A. (2018), "Titanium coating with hydroxyapatite and chitosan doped with silver nitrate", Mater. Res., 20(suppl 2), 863-868. https://doi.org/10.1590/1980-5373-mr-2017-0021
  53. Stockman, G., Didato, D. and Hurlow, E. (2007), "Antibiotics in hide preservation and bacterial control", J. Am. Leather Chem. Assoc. 102, 62-67.
  54. Tseng, H.J., Hsu, S.H., Wu, M.W., Hsueh, T.H. and Tu, P.C. (2009), "Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect", Fibers Polym., 10(1), 53-59. https://doi.org/10.1007/s12221-009-0053-5
  55. Velmurugan, P., Cho, M., Lee, S.M., Park, J.H., Bae, S. and Oh, B.T. (2014), "Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver", Carbohydr. Polym., 106, 319-325. https://doi.org/10.1016/j.carbpol.2014.02.021
  56. Vichi, A., Eliazyan, G. and Kazarian, S.G. (2018), "Study of the degradation and conservation of historical leather book covers with macro attenuated total reflection-Fourier transform infrared spectroscopic imaging", ACS Omega, 3(7), 7150-7157. https://doi.org/10.1021/acsomega.8b00773
  57. Wang, S.F., Shen, L., Tong, Y.J., Chen, L., Phang, I.Y., Lim, P.Q. and Liu, T.X. (2005), "Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization", Polym. Degrad. Stab., 90(1), 123-131. https://doi.org/10.1016/j.polymdegradstab.2005.03.001
  58. Widrow, C.A., Kellie, S.M., Saltzman, B.R. and Mathur-Wagh, U. (1991), "Pyomyositis in patients with the human immunodeficiency virus: An unusual form of disseminated bacterial infection", Am. J. Med., 91(2), 129-136. https://doi.org/10.1016/0002-9343(91)90004-H
  59. Xu, J., McCarthy, S.P., Gross, R.A. and Kaplan, D.L. (1996), "Chitosan film acylation and effects on biodegradability", Macromol., 29(10), 3436-3440. https://doi.org/10.1021/ma951638b
  60. Yakimets, I., Wellner, N., Smith, A.C., Wilson, R.H., Farhat, I. and Mitchell, J. (2005), "Mechanical properties with respect to water content of gelatin films in glassy state", Polym., 46(26), 12577-12585. https://doi.org/10.1016/j.polymer.2005.10.090
  61. Zhang, A.J., Qin, Q.L., Zhang, H., WANg, H.T., Li, X., Miao, L. and Wu, Y.J. (2011), "Preparation and characterisation of food-grade chitosan from housefly larvae", Czech J. Food Sci., 29, 616-623. https://doi.org/10.17221/100/2010-CJFS