참고문헌
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Safety J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003
- Ashteyat, A.M., Haddad, R.H. and Ismeik, M. (2014), "Prediction of mechanical properties of post-heated self-compacting concrete using non-destructive tests", Eur. J. Environ. Civil Eng., 18(1), 1-10. https://doi.org/10.1080/19648189.2013.841593
- Belouadah, M., Rahmouni, Z.E.A. and Tebbal, N. (2018), "Effects of glass powder on the characteristics of concrete subjected to high temperatures", Adv. Concrete Constr., Int. J., 6(3), 311-322. https://doi.org/10.12989/acc.2018.6.3.311
-
Chan, Y.N., Luo, X. and Sun, W. (2000), "Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to
$800^{\circ}C$ ", Cement Concrete Res., 30(2), 247-251. https://doi.org/10.1016/S0008-8846(99)00240-9 - Chen, Z., Chen, J., Ning, F. and Li, Y. (2019), "Residual properties of recycled concrete after exposure to high temperatures", Magazine Concrete Res., 71(15), 781-793. https://doi.org/10.1680/jmacr.17.00503
- Deshpande, A.A., Kumar, D. and Ranade, R. (2019), "Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite", Constr. Build. Mater., 208, 283-295. https://doi.org/10.1016/j.conbuildmat.2019.02.129
- Dong, X., Ding, Y. and Wang, T. (2008), "Spalling and mechanical properties of fiber reinforced highperformance concrete subjected to fire", J. Wuhan Univ. Technol., Materials Science Edition, 23(5), 743-749. https://doi.org/10.1007/s11595-007-5743-5
- Drzymala, T., Jackiewicz-Rek, W., Tomaszewski, M., Kus, A., Galaj, J. and Sukys, R. (2017), "Effects of High Temperature on the Properties of High Performance Concrete (HPC)", Procedia Eng., 172, 256-263. https://doi.org/10.1016/j.proeng.2017.02.108
- Drzymala, T., Jackiewicz-Rek, W., Galaj, J. and Sukys, R. (2018), "Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperature", J. Civil Eng. Manage., 24(2), 138-144. https://doi.org/10.3846/jcem.2018.457
- Gencel, O., Brostow, W., Del Coz Diaz, J.J., Martinez-Barrera, G. and Beycioglu, A. (2013), "Effects of elevated temperatures on mechanical properties of concrete containing haematite evaluated using fuzzy logic model", Mater. Res. Innov., 17(6), 382-391. https://doi.org/10.1179/1433075X12Y.0000000070
- Hachemi, S. and Ounis, A. (2017), "The influence of sand nature on the residual physical and mechanical properties of concrete after exposure to elevated temperature", Eur. J. Environ. Civil Eng., 8189(May), 1-16. https://doi.org/10.1080/19648189.2017.1327893
- Hewlett, P.C. (2004), Lea's Chemistry of Cement and Concrete, Elsevier Butterworth Heinemann Publication, Oxford, UK.
- IS 10262 (2009), Recommended guidelines for concrete mix design, Bureau of Indian Standards, New Delhi, India.
- IS 12269 (1987), Specification for ordinary Portland cement, Bureau of Indian Standards, New Delhi, India.
- IS 13311(Part I) (1992), Non-destructive testing of concrete-Methods of test for Ultrasonic pulse velocity, Bureau of Indian Standards, New Delhi, India.
- IS 383 (1970), Specification for coarse and fine aggregates from natural sources for concrete, Bureau of Indian Standards, New Delhi, India.
- IS 4031(Part 5) (1988), Methods of physical tests for hydraulic cement: Determination of initial and final setting times, Bureau of Indian Standards, New Delhi, India.
- IS 456 (2000), Code of practice for plain and reinforced concrete, Bureau of Indian Standards, New Delhi, India.
- IS 516 (1959), Method of tests for strength of concrete, Bureau of Indian Standards, New Delhi, India.
- ISO/TR 15655 (2003), Fire resistance-test for thermo-physical and mechanical properties of structural materials at elevated temperatures for fire engineering design, Technical report; Geneva, Switzerland.
- Khan, M.S. and Abbas, H. (2016), "Performance of concrete subjected to elevated temperature", Eur. J. Environ. Civil Eng., 20(5), 532-543. https://doi.org/10.1080/19648189.2015.1053152
- Ko, J., Ryu, D. and Noguchi, T. (2011), "The spalling mechanism of high-strength concrete under fire", Magaz. Concrete Res., 63(5), 357-370. https://doi.org/10.1680/macr.10.00002
- Le, Q.X., Dao, V.T.N., Torero, J.L., Maluk, C. and Bisby, L. (2018), "Effects of temperature and temperature gradient on concrete performance at elevated temperatures", Adv. Struct. Eng., 21(8), 1223-1233. https://doi.org/10.1177/1369433217746347
- Liu, Y., Jin, B., Huo, J. and Li, Z. (2018), "Effect of microstructure evolution on mechanical behaviour of concrete after high temperatures", Magaz. Concrete Res., 70(15), 770-784. https://doi.org/10.1680/jmacr.17.00197
- Ma, Q., Guo, R., Sun, Y., He, K., Du, H., Yan, F., Lin, Z. and Zhao, Z. (2018), "Behaviour of modified lightweight aggregate concrete after exposure to elevated temperatures", Magaz. Concrete Res., 70(5), 217-230. https://doi.org/10.1680/jmacr.17.00136
- Ozawa, M. and Morimoto, H. (2014), "Effects of various fibres on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Sahani, A.K., Samantaa, A.K. and Roy, D.K.S. (2019), "Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., Int. J., 7(4), 263-275. https://doi.org/10.12989/acc.2019.7.4.263
- Salau, M.A., Oseafiana, O.J. and Oyegoke, T.O. (2015), "Effects of elevated temperature on concrete with Recycled Coarse Aggregates", Proceedings of IOP Conference Series: Materials Science and Engineering, 96(1). https://doi.org/10.1088/1757-899X/96/1/012078
- Shaikh, F.U.A. (2018), "Effects of slag content on the residual mechanical properties of ambient air-cured geopolymers exposed to elevated temperatures", J. Asian Ceramic Societies, 6(4), 342-358. https://doi.org/10.1080/21870764.2018.1529013
- Siddique, R. and Kaur, D. (2012), "Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures", J. Adv. Res., 3(1), 45-51. https://doi.org/10.1016/j.jare.2011.03.004
- Sideris, K.K., Manita, P. and Chaniotakis, E. (2009), "Performance of thermally damaged fibre reinforced concretes", Constr. Build. Mater., 23(3), 1232-1239. https://doi.org/10.1016/j.conbuildmat.2008.08.009
-
Tai, Y.S., Pan, H.H. and Kung, Y.N. (2011), "Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching
$800^{\circ}C$ ", Nuclear Eng. Des., 241(7), 2416-2424. https://doi.org/10.1016/j.nucengdes.2011.04.008 - Wu, Z., Lo, S.H., Kang, H.T. and Su, K.L. (2019), "High Strength Concrete Tests under Elevated Temperature", Athens J. Τechnol. Eng., 6(3), 141-162. https://doi.org/10.30958/ajte.6-3-1
- Yadollahi, M.M., Benli, A. and Demirboʇa, R. (2015), "Effects of elevated temperature on pumice based geopolymer composites", Plast. Rubber Compos., 44(6), 226-237. https://doi.org/10.1179/1743289815Y.0000000020
- Zhao, H., Wang, Y. and Liu, F. (2017), "Stress-strain relationship of coarse RCA concrete exposed to elevated temperatures", Magaz. Concrete Res., 69(13), 649-664. https://doi.org/10.1680/jmacr.16.00333
- Zheng, W., Li, H. and Wang, Y. (2012), "Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature", Mater. Des., 41, 403-409. https://doi.org/10.1016/j.matdes.2012.05.026