References
-
An, T.H, Park, C., Soon, W.S., Choi, S.M., Kim, I.H. and Kim, S.U. (2012a), "Enhancement of p-type thermoelectric properties in an
$Mg_2Sn$ system", J. Korean. Phys, Soc., 60, 1717-1723. https://doi.org/10.3938/jkps.60.1717 -
An, T.H., Choi, S.M., Kim, I.H., Kim, S.U., Seo W.S., Kim, J.Y. and Park, C. (2012b), "Thermoelectric properties of a doped
$Mg_2Sn$ system", Renew. Energy, 42, 23-27. https://doi.org/10.1016/j.renene.2011.09.030 -
Bahk, J.H., Bian, Z. and Shakouri, A. (2014), "Electron transport modeling and energy filtering for efficient thermoelectric
$Mg_2Si_{1-x}Sn_x$ solid solutions", Phys. Rev. B, 89(7), 075204. https://doi.org/10.1103/PhysRevB.89.075204 -
Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A. and Elsheikh, M.H. (2014), "Recent advances on
$Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation", Renew. Sustain. Energy Rev., 37, 569-584. https://doi.org/10.1016/j.rser.2014.05.060 - Beer, A.G. and Barnett, M.R. (2007), "Microstructural development during hot working of Mg-3Al-1Zn", Metall. Mater. Trans. A, 38A, 1856-1867. https://doi.org/10.1007/s11661-007-9207-5
- Biswas, K., He, J., Blum, I.D., Iwu, C., Hogan, T.P., Seidman, D.N., Dravid, V.P. and Kanatzidis, M.G. (2012), "High-performance bulk thermoelectrics with all-scale hierarchical architectures", Nature, 489, 414-418. https://doi.org/10.1038/nature11439
- Bux, S.K., Fleurial, J.P. and Kaner, R.B. (2010), "Nanostructured materials for thermoelectric applications", Chem. Commu., 46(44), 8311-8324. https://doi.org/10.1039/C0CC02627A
- Chapellier, P.H., Ray, R.K. and Jonas, J.J. (1990), "Prediction of transformation textures in steels", Acta. Metall. Mater., 38(8), 1475-1490. https://doi.org/10.1016/0956-7151(90)90116-X
-
Chen, H.Y. and Savvides, N. (2009), "Microstructure and thermoelectric properties of n- and p-type doped
$Mg_2Sn$ compounds prepared by the modified Bridgman method", J. Electron. Mater., 38, 1056-1060. https://doi.org/10.1007/s11664-008-0630-1 -
Chen, H.Y., Savvides, N., Dasgupta, T., Stiewe, C. and Mueller, E. (2010), "Electronic and thermal transport properties of
$Mg_2Sn$ crystals containing finely dispersed eutectic structures", Physica Status Solidi (a), 207, 2523-2531. https://doi.org/10.1002/pssa.201026119 -
Choi, S.M., An, T.H., Seo, W.S., Park, C., Kim, I.H. and Kim, S.U. (2012), "Doping effects on thermoelectric properties in the
$Mg_2Sn$ system", J. Electron. Mater., 41, 1071-1076. https://doi.org/10.1007/s11664-012-1985-x - Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. and Mohamad, M. (2014), "A review on thermoelectric renewable energy: principle parameters that affect their performance", Renew. Sustain. Energy Rev., 30, 337-355. https://doi.org/10.1016/j.rser.2013.10.027
-
Fedorov, M.I., Zaitsev, V.K., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y. and Vedernikov, M.V. (2006), "Highly effective
$Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Rev. B, 74(4), 45207. https://doi.org/10.1103/PhysRevB.74.045207 - Han, C., Li, Z. and Dou, S. (2014), "Recent progress in thermoelectric materials", Chinese Sci. Bull., 59(18), 2073-2091. https://doi.org/10.1007/s11434-014-0237-2
- Hu, L., Gao, H., Liu, X., Xie, H., Shen, J., Zhu, T. and Zhao, X. (2012), "Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects", J. Mater. Chem., 22(32), 16484-16490. https://doi.org/10.1039/C2JM32916F
- Humphreys, F.J. and Hatherly, M. (2004), Recrystallization and Related Annealing Phenomenon (Second Edition.
- Ion, S.E., Humphreys, F.J. and White, S.H. (1982), "Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium", Acta Metall., 30(10), 1909-1919. https://doi.org/10.1016/0001-6160(82)90031-1
-
Jiang, G., Chen, L., Gao, H., Du, Z., Zhao, X., Tritt, T.M. and Zhu, T. (2013), "Improving p-type thermoelectric performance of
$Mg_2$ (Ge,Sn) compounds via solid solution and Ag doping", Intermetallics, 32, 312-317. https://doi.org/10.1016/j.intermet.2012.08.002 -
Johnson, D.D. and Alam, A. (2018), "Enhanced thermoelectric performance of
$Mg_2Si_{1-x}Sn_x$ codoped with Bi and Cr", Phys. Rev B, 98(11), 115204. https://doi.org/10.1103/PhysRevB.98.115204 -
Kim, S., Wiendlocha, B., Jin, H., Tobola, J. and Heremans, J.P. (2014), "Electronic structure and thermoelectric properties of p-type Ag-doped
$Mg_2Sn$ and$Mg_2Si_{1-x}Sn_x$ (x = 0.05, 0.1)", J. Appl. Phys., 116(15), 153706. https://doi.org/10.1063/1.4898013 -
Kim, C.E., Soon, A. and Stampfl, C. (2016), "Unraveling the origins of conduction band valley degeneracies in
$Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Chem. Chem. Phys., 18(2), 939-946. https://doi.org/10.1039/C5CP06163F -
Kitagawa, H., Kurata, A., Araki, H., Morito, S. and Tanabe, E. (2010), "Effect of Deformation Temperature on Texture and Thermoelectric Properties of
$Bi_{0.5}Sb_{1.5}Te_3$ Prepared by Hot-Press Deformation", J. Electron. Mater., 39, 1692-1695. https://doi.org/10.1007/s11664-010-1181-9 -
Lee, D.M., Lim, C.H., Cho, D.C., Lee, Y.S. and Lee, C.H. (2006), "Effects of annealing on the thermoelectric and microstructural properties of deformed n-type
$Bi_2Te_3$ -based compounds", J. Electron. Mater, 35, 360-365. https://doi.org/10.1007/BF02692457 - Lee, D.H., Lee, J.U., Jung, S.J., Baek, S.H., Kim, J.H., Kim, D.I., Hyun, D.B. and Kim, J.S. (2014), "Effect of heat treatment on the thermoelectric properties of Bismuth-Antimony-Telluride prepared by mechanical deformation and mechanical alloying", J. Electron. Mater., 43, 2255-2261. https://doi.org/10.1007/s11664-014-3037-1
- Liu, H., Chen, Y., Tang, Y., Wei, S. and Niu, G. (2007), "The microstructure, tensile properties and creep behaviour of as-cast Mg-(1-10) %Sn alloys", J. Alloys Compd., 440(1-2), 122-126. https://doi.org/10.1016/j.jallcom.2006.09.024
- Lu, H., Wang, C.A., Huang, Y. and Xie, H. (2014), "Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics", Sci. Rep., 4, 6823. https://doi.org/10.1038/srep06823
- Macario, L.R., Cheng, X., Ramirez, D., Mori, T. and Kleinke, H. (2018), "Thermoelectric properties of Bidoped magnesium silicide stannides", ACS Appl. Mater. Inter., 10(47), 40585-40591. https://doi.org/10.1021/acsami.8b15111
- Mark, B. (2013), "Remarkable magnesium: the 21st century structural alloy for small components", FisherCast Global Corporation.
- Mezbahul-Islam, M., Mostafa, A.O. and Medraj, M. (2014), "Essential magnesium alloys binary phase diagrams and their thermochemical data", J. Mater., 2014, 1-33. https://doi.org/10.1155/2014/704283
- Minnich, A.J., Dresselhaus, M.S., Ren, Z.F. and Chen, G. (2009), "Bulk nanostructured thermoelectric materials: current research and future prospects", Energy Environ. Sci., 2(5), 466-479. https://doi.org/10.1039/B822664B
- Ray, R.K. and Jonas, J.J. (1990), "Transformation textures in steels", Int. Mater. Rev. 35(1), 1-36. https://doi.org/10.1179/095066090790324046
- Rowe, D.M. (1995), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, Florida, United States.
- Sahoo, S.K., Sabat, R.K., Panda, S., Mishra, S.C. and Suwas S. (2015), "Mechanical property of pure magnesium: from orientation perspective pertaining to deviation from basal orientation", J. Mater. Eng. Perf., 24(6), 2346-2353. https://doi.org/10.1007/s11665-015-1522-1
- Santos, R., Yamini, S.A. and Dou, S.X. (2018), "Recent progress in magnesium-based thermoelectric materials", J. Mater. Chem. A, 6(8), 3328-3341. https://doi.org/10.1039/C7TA10415D
- Shakouri, A. (2011), "Recent developments in semiconductor thermoelectric physics and materials", Annu. Rev. Mater. Res., 41, 399-431. https://doi.org/10.1146/annurev-matsci-062910-100445
- Snyder, G.J. and Toberer, E.S. (2008), "Complex thermoelectric materials", Nat. Mater., 7, 101-110. https://doi.org/10.1142/9789814317665_0016
- Thiagarajan, S.J., Wang, W. and Yang, R. (2010), "Nanocomposites as high efficiency thermo- electric materials", Annual Review of Nano Research. World Scientific, Boulder, CO, USA.
- Tritt, T.M. (2002), "Thermoelectric Materials: Principles, Structure, Properties, and Applications", In: Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., 1-11.
- Tritt, T.M. (2004), Thermal conductivity theory, properties, and applications, Springer, New York, USA.
- Tritt, T.M. and Subramanian, M.A. (2006), "Thermoelectric materials, phenomena, and applications: a bird's eye view", MRS Bull., 31(3), 188-229. https://doi.org/10.1557/mrs2006.44
-
Viennois, R., Colinet, C., Jund, P. and Tedenac, J.C. (2012), "Phase stability of ternary antifluorite type compounds in the quasi binary systems
$Mg_2X-Mg_2Y$ (X, Y = Si, Ge, Sn) via ab-initio calculations", Intermetallics, 12, 145-151. https://doi.org/10.1016/j.intermet.2012.06.016 - Wang, S., Yang, J., Toll, T., Yang, J., Zhang, W. and Tang, X. (2015), "Conductivity-limiting bipolar thermal conductivity in semiconductors", Sci. Rep., 5, 10136. https://doi.org/10.1038/srep10136
-
Xu, Z.J., Hu, L.P., Ying, P.J., Zhao, X.B. and Zhu, T.J. (2015), "Enhanced thermoelectric and mechanical properties of zone melted p-type
$(Bi,Sb)_2Te_3$ thermoelectric materials by hot deformation", Acta Mater., 84, 385-392. https://doi.org/10.1016/j.actamat.2014.10.062 - Zheng, J.C. (2008), "Recent advances on thermoelectric materials", Front. Phys. China, 3, 269-279. https://doi.org/10.1007/s11467-008-0028-9