DOI QR코드

DOI QR Code

Effect of Gas Diffusion Layer Property on PEMFC Performance

기체확산층 물성이 고분자전해질 연료전지 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • 김준섭 (울산대학교 화학공학부) ;
  • 김준범 (울산대학교 화학공학부)
  • Received : 2020.08.21
  • Accepted : 2020.09.23
  • Published : 2020.10.12

Abstract

Gas diffusion layer (GDL) is one of the main components of PEMFC as a pathway of reactants from a flow field to an electrode, water transport in reverse direction, heat management and structural support of MEA. In this study, the effect of GDL on fuel cell performance was investigated for commercial products such as 39BC and JNT30-A3. Polarization curve measurements were performed at different flow rates and relative humidity conditions using 25 ㎠ unit cell. The parameters on operating conditions were calculated using an empirical equation. The electrical resistance increased as the GDL PTFE content increased. The crack of microporous layer had influence on the concentration loss as water pathway. In addition, the ohmic resistance increased as the relative humidity decreased, but decreased as the current density increased due to water formation. Curve fitting analysis using the empirical equation model was applied to identify the tendency of performance parameters on operating conditions for the gas diffusion layer.

기체확산층은 유로에서 전극으로 반응물을 전달하고, 반응으로 생성되는 물을 배출하는 통로이며 열 배출과 전극 지지대 등의 역할을 하는 고분자전해질 연료전지의 핵심 구성요소이다. 본 연구에서는 국내외 기체확산층 상용 제품인 39BC와 JNT30-A3에 대한 연료전지의 성능 평가를 수행하였다. 25 ㎠ 단위 전지를 이용하여 유량, 상대습도 조건에 대한 분극 곡선을 측정하였고, empirical equation을 이용하여 운전 조건에 대한 성능 인자를 도출하였다. 기체확산층의 PTFE 함량이 높을수록 저항이 증가하였고, 미세다공층의 크랙은 물의 이동 통로로서 농도 손실에 영향을 미쳤다. 또한 상대습도가 낮을수록 Ohmic 저항이 증가하였지만, 전류밀도가 증가할수록 이온전도도가 증가하여 Ohmic 저항이 감소하였다. Empirical equation을 이용한 fitting curve을 통하여 기체확산층의 운전 조건에 대한 성능 인자 경향을 해석할 수 있었다.

Keywords

References

  1. J. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev., 11, 1720-1738 (2007). https://doi.org/10.1016/j.rser.2006.01.005
  2. O. Erdinc and M. Uzunoglu, A recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy, Renew. Sustain. Energy Rev., 14, 2874-2884 (2010). https://doi.org/10.1016/j.rser.2010.07.060
  3. D. Lee, A. Elgowainy, A. Kotz, R. Vijayagopal, and J. Marcinkoski, Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks, J. Power Sources, 393, 217-229 (2018) https://doi.org/10.1016/j.jpowsour.2018.05.012
  4. S. Park, J. Lee, and B. N. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs, Int. J. Hydrogen Energy, 37, 5850-5865 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.148
  5. R. Omrani and B. Shabani, Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review, Int. J. Hydrogen Energy, 42, 28515-28536 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.132
  6. H. Lee, J. Park, D. Kim, and T. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC, J. Power Sources, 131, 200-206 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.039
  7. R. Roshandel, B. Farhanieh, and E. Saievar-Iranizad, The effects of porosity distribution variation on PEM fuel cell performance, Renew. Energ., 30, 1557-1572 (2005). https://doi.org/10.1016/j.renene.2004.11.017
  8. S. Park, J. Lee, and B. N. Popov, Effect of PTFE content in microporous layer on water management in PEM fuel cells, J. Power Sources, 177, 457-463 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.055
  9. M. Mortazavi and K. Tajiri, Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells, J. Power Sources, 245, 236-244 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.138
  10. Y. Chen, T. Tian, Z. Wan, F. Wu, J. Tan, and M. Pan, Influence of PTFE on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell, Int. J. Electrochem. Sci., 13, 3827-2842 (2018).
  11. T. Chen, S. Liu, J. Zhang, and M. Tang, Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC, Int. J. Heat Mass Transf., 128, 1168-1174 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097
  12. J. Nam, K. Lee, G. Hwang, C. Kim, and M. Kaviany, Microporous layer for water morphology control in PEMFC, Int. J. Heat Mass Transf., 52, 2779-2791 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.002
  13. H. Markotter, J. Haussmann, R. Alink, C. Totzke, T. Arlt, M. Klages, H. Riesemeier, J. Scholta, D. Gerteisen, J. Banhart, and I. Manke, Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investigated by synchrotron radiography, Electrochem. Commun., 34, 22-24 (2013). https://doi.org/10.1016/j.elecom.2013.04.006
  14. P. Deevanhxay, T. Sasabe, S. Tsushima, and S. Hirai, Effect of liquid water distribution in gas diffusion media with and without microporous layer on PEM fuel cell performance, Electrochem. Commun., 34, 239-241 (2013). https://doi.org/10.1016/j.elecom.2013.07.001
  15. R. B. Ferreira, D. S. Fackcao, V. B. Oliveira, and A. M. F. R. Pinto, Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment, Electrochim. Acta, 224, 337-345 (2017). https://doi.org/10.1016/j.electacta.2016.12.074
  16. J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.069
  17. Y. Wu, J. I. S. Cho, X. Lu, L. Rasha, T. P. Neville, J. Millichamp, R. Ziesche, N. Kardjilov, H. Markotter, P. Shearing, D. J. L. Brett, Effect of compression on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 412, 597-605 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.048
  18. C. Simon, F. Hasche, and H. A. Gasteiger, Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels, J. Electrochem. Soc., 164, F591-F599 (2017). https://doi.org/10.1149/2.0691706jes
  19. J. Kim, S. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 8, 2670-2674 (1995).
  20. G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, and A. Patti, An empirical equation for polymer electrolyte fuel cell (PEFC) behavior, J. Appl. Electrochem., 29, 1449-1455 (1999). https://doi.org/10.1023/A:1003890219394
  21. L. Pisani, G. Murgia, M. Valentini, and B. D'Aguanno, A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power Sources, 108, 192-203 (2002). https://doi.org/10.1016/S0378-7753(02)00014-9
  22. S. D. Fraser and V. Hacker, An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation, J. Appl. Electrochem., 38, 451-456 (2008). https://doi.org/10.1007/s10800-007-9458-2
  23. D. Hao, J. Shen, Y. Hou, Y. Zhou, and H. Wang, An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 16, 1-10 (2016).
  24. I. Han, S. Park, and C. Chung, Effect of gas diffusion layer compression on the polarization curve of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model, Korean J. Chem. Eng., 33(11), 3121-3127 (2016). https://doi.org/10.1007/s11814-016-0157-8