DOI QR코드

DOI QR Code

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan (Institute of Structural Engineering, Zhejiang Univ.) ;
  • Bai, Hang (Institute of Structural Engineering, Zhejiang Univ.) ;
  • Huang, Mingfeng (Institute of Structural Engineering, Zhejiang Univ.) ;
  • Duan, Zhiyong (Zhejiang Electric Power Design Institute Co., Ltd. of CEEC) ;
  • Bian, Rong (Economy Research Institute of State Grid Zhejiang Electric Power Company)
  • Received : 2019.09.28
  • Accepted : 2020.03.18
  • Published : 2020.08.25

Abstract

The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Keywords

References

  1. Abdi, D.S. and Bitsuamlak, G.T. (2014), "Wind flow simulations on idealized and real complex terrain using various turbulence models", Advan. Eng. Softw., 75, 30-41. http://doi.org/10.1016/j.advengsoft.2014.05.002.
  2. Aboshosha, H., Elawady, A., Ansary, A. and El Damatty, A. (2016), "Review on the buffeting dynamic response of transmission lines under synoptic wind", Eng. Struct., 112, 23-46. http://doi.org/10.1016/j.engstruct.2016.01.003.
  3. ASCE 74 (2009), Guidelines for electrical transmission line structure loading, The American Society of Civil Engineers, Reston, Virginia, U.S.A.
  4. Bitsuamlak, G.T., Stathopoulos, T. and Bedard, C. (2006), "Effects of upstream two-dimensional hills on design wind loads: A computational approach", Wind Struct., 9(1), 37-58. http://doi.org/10.12989/was.2006.9.1.037.
  5. Brook, R.R. (1975), "A note on vertical coherence of wind measured in an urban boundary layer", Bound. Lay. Meteorol., 9(1), 11-20. http://doi.org/10.1007/BF00232250.
  6. Cao, S. and Tamura, T. (2007), "Effects of roughness blocks on atmospheric boundary layer flow over a two- dimensional low hill with/without sudden roughness change", J. Wind Eng. Ind. Aerod., 95(8), 679-695. http://doi.org/10.1016/j.jweia.2007.01.002.
  7. Carpenter, P. and Locke, N. (1999), "Investigation of wind speeds over multiple two-dimensional hills", J. Wind Eng. Ind. Aerod., 83(1-3), 109-120. http://doi.org/10.1016/S0167-6105(99)00065-3.
  8. Davenport, A.G. (1962), "The response of slender line-like structures to a gusty wind", Proceedings of the Institution of Civil Engineers, 23(3), 389-408. http://doi.org/10.1680/iicep.1962.10876.
  9. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div. (ASCE), 97(6), 11-34. https://doi.org/10.1061/JSDEAG.0001692
  10. DL/T 5154 (2012), Technical code of design for tower and pole structures of overhead transmission line, National Energy Administration of the People's Republic of China, Beijing, China.
  11. ESDU 85020 (1990), Characteristics of atmospheric turbulence near the ground and turbulence-mean hourly and gust speeds, extreme speeds, turbulence characteristics, Engineering Sciences Data Unit, London, U.K.
  12. FEMA P695 (2009), NEHRP Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., U.S.A.
  13. Fenerci, A., Oiseth, O. and Ronnquist, A. (2017), "Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain", J. Wind Eng. Ind. Aerod., 147, 269-284. http://doi.org/10.1016/j.engstruct.2017.05.070.
  14. GB 50009 (2012), Load Code for the Design of Building Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China; Beijing, China.
  15. Hu, L., Li, L. and Gu, M. (2010), "Error assessment for spectral representation method in wind velocity field simulation", J. Eng. Mech. (ASCE), 136(9), 1090-1104. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000058.
  16. Hua, X.G., Chen, Z.Q., Yang, J.B., Niu, H.W. and Chen, B. (2014), "Turbulence integral scale corrections to experimental results of aeroelastic models with large geometric scales: application to gust loading factor of a transmission line tower", Advan. Struct. Eng., 17(8), 1189-1197. http://doi.org/10.1260/1369-4332.17.8.1189.
  17. Huang, G.Q. (2015), "Application of proper orthogonal decomposition in fast Fourier transform-assisted multivariate nonstationary process simulation", J. Eng. Mech. (ASCE), 141(7), 04015015. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000923.
  18. Huang, G.Q., Jiang, Y., Peng, L.L., Solari, G., Liao, H.L. and Li, M.S. (2019), "Characteristics of intense winds in mountain area based on field measurement: focusing on thunderstorm winds", J. Wind Eng. Ind. Aerod., 190, 166-182. http://doi.org/10.1016/j.jweia.2019.04.020.
  19. Huang, M.F., Li, Q., Chan, C.M., Lou, W.J., Kwok, K.C.S. and Li, G. (2015), "Performance-based design optimization of tall concrete framed structures subject to wind excitations", J. Wind Eng. Ind. Aerod., 139, 70-81. http://doi.org/10.1016/j.jweia.2015.01.005.
  20. Huang, M.F., Lou, W.J, Yang, L., Sun, B., Shen, G. and Tse, K.T. (2012), "Experimental and computational simulation for wind effects on the Zhoushan transmission towers", Struct. Infrastruct. Eng., 8(8), 781-799. http://doi.org/10.1080/15732479.2010.497540.
  21. Jackson, P.S. and Hunt, J.C.R. (1975), "Turbulent wind flow over a low hill", Quart. J. Royal Meteorol. Soc., 101(430), 929-955. http://doi.org/10.1002/qj.49710143015.
  22. JEC-127 (1979), Design standard on structures of transmission, The Institute of Electrical Engineers of Japan; Tokyo, Japan.
  23. Jubayer, C. and Hangan, H. (2018), "A hybrid approach for evaluating wind flow over a complex terrain", J. Wind Eng. Ind. Aerod., 175, 65-76. http://doi.org/10.1016/j.jweia.2018.01.037.
  24. Kareem, A. and Zhou, Y. (2003), "Gust loading factor-past, present and future", J. Wind Eng. Ind. Aerod., 91(12-15), 1301-1328. http://doi.org/10.1016/j.jweia.2003.09.003.
  25. Kim, H.G., Patel, V.C. and Lee, C.M. (2000), "Numerical simulation of wind flow over hilly terrain", J. Wind Eng. Ind. Aerod., 87(1), 45-60. http://doi.org/10.1016/S0167-6105(00)00014-3.
  26. Li, Z., Wei, Q. and Sun, Y. (2012), "Experimental research on amplitude characteristics of complex hilly terrain wind field", Eng. Mech., 29(3), 184-191.
  27. Lou, W., Liu, M., Li, Z., Zhang, L. and Bian, R. (2016), "Research on mean wind speed characteristics and speed-up effect in valley terrain", J. Hunan Univ. (Nat. Sci.), 43(7), 8-15. http://doi.org/10.3969/j.issn.1674-2974.2016.07.002.
  28. Lubitz, W.D. and White, B.R. (2007), "Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills", J. Wind Eng. Ind. Aerod., 95(8), 639-661. http://doi.org/10.1016/j.jweia.2006.09.001.
  29. Mason, P.J. (1987), "Diurnal variations in flow over a succession of ridges and valleys", Quart. J. Royal Meteorol. Soc., 113(478), 1117-1140. http://doi.org/10.1002/qj.49711347804.
  30. Panofsky, H.A., Thomson, D.W., Sullivan, D.A. and Moravek, D.E. (1974), "Two-point velocity statistics over Lake Ontario", Bound. Lay. Meteorol., 7(3), 309-321. http://doi.org/10.1007/BF00240834.
  31. Peng, L.L., Huang, G.Q., Chen, X.Z. and Kareem, A. (2017), "Simulation of multivariate nonstationary random processes: hybrid stochastic wave and proper orthogonal decomposition approach", J. Eng. Mech. (ASCE), 143(9), 04017064. http://doi.org/10.1061/(ASCE)EM.1943-7889.0001273.
  32. Peng, L.L., Huang, G.Q., Kareem, A. and Li, Y.L. (2016), "An efficient space-time based simulation approach of wind velocity field with embedded conditional interpolation for unevenly spaced locations", Probab. Eng, Mech., 43, 156-168. http://doi.org/10.1016/j.probengmech.2015.10.006.
  33. Pielke, R.A. and Panofsky, H.A. (1970), "Turbulent characteristics along several towers", Bound. Lay. Meteorol., 1(2), 115-130. http://doi.org/10.1007/BF00185733.
  34. Salmon, J.R., Teunissen, H.W., Mickle, R.E. and Taylor, P.A. (1988), "The Kettles Hill Project: field observations, wind- tunnel simulations and numerical model predictions for flow over a low hill", Bound. Lay. Meteorol., 43(4), 309-343. http://doi.org/10.1007/BF00121711.
  35. Shiau, B.S. and Hsu, S.C. (2003), "Measurement of the Reynolds stress structure and turbulent characteristics of the wind above a two-dimensional trapezoidal shape of hill", J. Wind Eng. Ind. Aerod., 91(10), 1237-1251. http://doi.org/10.1016/S0167-6105(03)00075-8.
  36. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. http://doi.org/10.1016/0022-460X(72)90600-1.
  37. Solari, G. and Piccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Probab. Eng. Mech., 16(1), 73-86. http://doi.org/10.1016/S0266-8920(00)00010-2.
  38. Takahashi, T., Ohtsu, T., Yassin, M.F., Kato, S. and Murakami, S. (2002), "Turbulent characteristics of wind over a hill with a rough surface", J. Wind Eng. Ind. Aerod., 90(12), 1697-1706. http://doi.org/10.1016/S0167-6105(02)00280-5.
  39. Tapia-Hernandez, E. and Emilio, S. (2017), "Structural behavior of lattice transmission towers subjected to wind load", Struct. Infrastruct. Eng., 13(11), 1462-1475. http://doi.org/10.1080/15732479.2017.1290120.
  40. Taylor, P.A. (1977), "Some numerical studies of surface boundary-layer flow above gentle topography", Bound. Lay. Meteorol., 11(4), 439-465. http://doi.org/10.1007/BF02185870.
  41. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. http://doi.org/10.1016/j.jweia.2008.02.058.
  42. van de Lindt, J.W. and Dao, T.N. (2009), "Performance-based wind engineering for wood-frame buildings", ASCE J. Struct. Eng., 135(2), 169-177. http://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(169).
  43. Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proceedings of the National Academy of Sciences of the United States of America, 34(11), 530-539. http://doi.org/10.1073/pnas.34.11.530.
  44. Wallace, J.M. and Hobbs, P.V. (2006), Atmospheric Science, Academic Press, Salt Lake City, Utah, U.S.A.
  45. Zareian, F., Kaviani, P. and Taciroglu, E. (2015), "Multiphase performance assessment of structural response to seismic excitations", J. Struct. Eng., 141(11), 04015041. http://doi.org/10.1061/(ASCE)ST.1943-541X.0001224.