DOI QR코드

DOI QR Code

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham (Civil Engineering Department, Ryerson University) ;
  • Mara, Thomas G. (The Boundary Layer Wind Tunnel Laboratory, Western University) ;
  • Izukawa, Nicole (Civil Engineering Department, Ryerson University)
  • 투고 : 2019.09.27
  • 심사 : 2020.02.19
  • 발행 : 2020.08.25

초록

Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

키워드

참고문헌

  1. Abd-Elaal, E., Mills, J.E. and Ma, X. (2013), "An analytical model for simulating steady state flows of downburst", J. Wind Eng. Ind. Aerod., 115, 53-64. https://doi.org/10.1016/j.jweia.2013.01.005.
  2. Abd-Elaal, E.S., Mills, J.E. and Ma, X. (2013), "A coupled parametric-CFD study for determining ages of downbursts through investigation of different field parameters", J. Wind Eng. Ind. Aerod., 123(Part A), 30-42. https://doi.org/10.1016/j.jweia.2013.09.010.
  3. Aboshosha, H. and El Damatty, A. (2015), "Engineering method for estimating the reactions of transmission line conductors under downburst winds", J. Eng. Struct., 99, 198-216. https://doi.org/10.1016/j.engstruct.2015.04.010.
  4. Aboshosha, H., Bitsuamlak, G. and El Damatty A. (2015), "Turbulence characterization of downbursts using LES", J. Wind Eng. Ind. Aerod., 136, 44-61. https://doi.org/10.1016/j.jweia.2014.10.020.
  5. Aboshosha, H., Elawady, A., Ansary, A. and El Damatty, A. (2016), "Review on the buffeting dynamic response of transmission lines under synoptic wind", J. Eng. Struct., 112(1), 23-46. https://doi.org/10.1016/j.engstruct.2016.01.003.
  6. Alawady, A., Aboshosha, H., Bitsuamlak, G. and El Damatty, A. (2016), "Wind tunnel testing of a multiple span aeroelastic transmission line subjected to downburst wind", Proceedings Of The CSCE 2016. Natural Disaster Mitigation Specialty Conference, 538-1-8.
  7. ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, ASCE; Reston, VA, U.S.A.
  8. ASCE 7-16 (2016), Minimum Design Loads for Buildings and Other Structures, ASCE; Reston, VA, U.S.A.
  9. Atlas, D., Ulbrich, C.W. and Williams, C.R. (2004), "Physical origin of a wet microburst: Observations and theory", J. Atmos. Sci., 61, 1186-1196. https://doi.org/10.1175/1520-0469(2004)061%3C1186:POOAWM%3E2.0.CO;2.
  10. Boundary Layer Wind Tunnel Laboratory (BLWTL) (2007), Wind Tunnel Testing: A General Outline, The University of Western Ontario.
  11. Charba, J. (1974), "Application of gravity current model to analysis of squall-line gust front", Mon. Weather Rev., 102, 140-156. https://doi.org/10.1175/1520-0493(1974)102%3C0140:AOGCMT%3E2.0.CO;2.
  12. Chay, M.T., Albermani, F. and Wilson, R. (2006), "Numerical and analytical simulation of downburst wind loads", Eng. Struct., 28(2), 240-254. https://doi.org/10.1016/j.engstruct.2005.07.007.
  13. Choi, E.C.C. (1999), "Extreme wind characteristics over Singapore - an area in the equatorial belt", J. Wind Eng. Ind. Aerod., 83(1-3), 61-69. https://doi.org/10.1016/S0167-6105(99)00061-6.
  14. Choi, E.C.C. and Hidayat, F.A. (2002), "Gust factors for thunderstorm and nonthunderstorm winds", J. Wind Eng. Ind. Aerod., 90(12-15), 1683-1696. https://doi.org/10.1016/S0167-6105(02)00279-9.
  15. Choi, E.C.C. and Tanurdjaja, A. (2002), "Extreme wind studies in Singapore. An area with mixed weather system", J. Wind Eng. Ind. Aerod., 90(12-15), 1611-1630. https://doi.org/10.1016/S0167-6105(02)00274-X.
  16. Cook, N.J. (1982), "Towards better estimation of extreme winds", J. Wind Eng. Ind. Aerod., 9, 295-323. https://doi.org/10.1016/0167-6105(82)90021-6.
  17. Darwish, M. and El Damatty, A. (2011), "Behavior of self supported transmission line towers under stationary downburst loading", Wind Struct., 14(5), 481-498. https://doi.org/10.12989/was.2011.14.5.481
  18. De Gaetano P., Repetto, M.P., Repetto, T. and Solari, G. (2014), "Separation and classification of extreme wind events from anemometric records", J. Wind Eng. Ind. Aerod., 126, 132-43. https://doi.org/10.1016/j.jweia.2014.01.006.
  19. Duranona, V., Sterling, M. and Baker, C.J. (2006), "An analysis of extreme non-synoptic winds", J. Wind Eng. Ind. Aerodyn., 95, 1007-1027. https://doi.org/10.1016/j.jweia.2007.01.014
  20. ESDU 82026 (2002), Strong Winds in the Atmospheric Boundary Layer. Part 1: Hourly-Mean Wind Speeds, Engineering Sciences Data Unit; London, U.K.
  21. ESDU 85020 (2001), Characteristics of Atmospheric Turbulence Near the Ground. Part II: Single Point Data for Strong Winds, Engineering Sciences Data Unit; London, U.K.
  22. FSF Editorial Staff (2003), "Inadequate weather communication cited in B-737 microburst-downdraft incident", Airport Operations., 29(1).
  23. Fujita, T.T. (1985), The Downburst Report of Projects NIMROD and JAWS, The University of Chicago.
  24. Fujita, T.T. (1990), "Downbursts: meteorological features and wind field characteristics", J. Wind Eng. Ind. Aerodyn., 36(1), 75-86. https://doi.org/10.1016/0167-6105(90)90294-M.
  25. Gast, K.D. and Schroeder, J.L. (2003), "Supercell rear-flank downdraft as sampled in the 2002 thunderstorm outflow experiment", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas, U.S.A.
  26. Gast, K.D. and Schroeder, J.L. (2005), "Extreme wind events observed in the 2002 thunderstorm outflow experiment", Proceedings of the 10th Americas Conference on Wind Engineering (10 ACWE), Baton Rouge, LA, U.S.A.
  27. Georgiou, P.N., Davenport, A.G. and Vickery, B.J. (1983), "Design wind speeds in regions dominated by tropical cyclones", J. Wind Eng. Ind. Aerod., 13, 139-152. https://doi.org/10.1016/0167-6105(83)90136-8.
  28. Goff, R.G. (1976), "Vertical structure of thunderstorm outflows" Mon. Weather Rev., 104, 1429-1440. https://doi.org/10.1175/15200493(1976)104%3C1429:VSOTO%3E2.0.CO;2.
  29. Gomes, L. and Vickery, B.J. (1976), "On thunderstorm wind gusts in Australia", Civil Eng.Trans. Inst. Eng. Aust., 18, 33-39.
  30. Gomes, L. and Vickery, B.J. (1978), "Extreme wind speeds in mixed climates", J. Wind Eng. Ind. Aerod., 2(4) 331-344. https://doi.org/10.1016/0167-6105(78)90018-1
  31. Gunter, W.S. and Schroeder, J.L. (2013), "High-resolution full-scale measurements of thunderstorm outflow winds", Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, Washington, U.S.A.
  32. Hangan, H., Roberts, D., Xu, Z. and Kim, J. (2003), "Downburst simulation, experimental and numerical challenges", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas, USA, Electronic Version.
  33. Harris, R.I. (2014), "A simulation method for the macro-meteorological wind speed and the implications for extreme value analysis", J. Wind Eng. Ind. Aerod., 125, 145-155. https://doi.org/10.1016/j.jweia.2013.12.003.
  34. Hjelmfelt, M.R. (1988), "Structure and Life Cycle of Microburst Outflows Observed in Colorado", J. Appl. Meteorol., 27(8), 900-927. https://doi.org/10.1175/1520-0450(1988)027%3C0900:SALCOM%3E2.0.CO;2.
  35. Holmes, J.D. and Oliver, S.E. (2000), "An empirical model of a downburst", Eng. Struct., 22(9), 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9.
  36. Holmes, J.D., Hangan, H.M., Schroeder, J.L., Letchford, C.W. and Orwig, K.D. (2008), "A forensic study of the Lubbock-Reese downdraft of 2002", Wind Struct., 11(2), 19-39. https://doi.org/10.12989/was.2008.11.2.137.
  37. Jarvi, L., Punkka, A.J., Schultz, D.M., Petaja T., Hohti, H., Rinne, J., Pohja, T., Kulmala, M., Hari, P. and Vesala T. (2007), "Micrometeorological observations of a microburst in southern Finland", Bound. Lay. Meteorol., 125, 343-359. https://doi.org/10.1007/978-0-387-74321-9_13.
  38. Kent, C., Grimmond, S., Barlow, J., Gatey, D., Kotthaus, S., Lindberg, F. and Halios, H. (2017), "Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas", Bound. Lay. Meteorol., 164, 183-213. https://doi.org/10.1007/s10546-017-0248-z.
  39. Kim, J. and Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerod., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002.
  40. Kyng, T. and Konstandatos, O. (2014), "Multivariate Monte-Carlo simulation and economic valuation of complex financial contracts: an Excel based implementation", Spreadsheets Education, 3(2), article 5.
  41. Levitan, M., Lombardob, F., Pintarc, A., Vickery, P. and Simiu E., (2017), "Development of new wind speed maps for the ASCE 7-16 standard", 13th Americas Conference on Wind Engineering, Gainsville, Florida, U.S.A., May.
  42. Li, S. and Hong, H. (2016), "Typhoon wind hazard estimation for China using an empirical track model", Nat. Hazards, 82, 1009-1029. https://doi.org/10.1007/s11069-016-2231-2.
  43. Lombardo, F.T., Main, J.A. and Simiu, E., (2009), "Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis", J. Wind Eng. Ind. Aerodyn., 97, 120-131. https://doi.org/10.1016/j.jweia.2009.03.001.
  44. Mason, M.S., Fletcher, D.F. and Wood, G.S. (2010), "Numerical simulation of idealised three-dimensional downburst wind fields", Eng. Struct., 32(11), 3558-3570. https://doi.org/10.1016/j.engstruct.2010.07.024.
  45. Mason, M.S., Wood, G.S. and Fletcher, D.F., (2009), "Numerical simulation of downburst winds", J. Wind Eng. Ind. Aerod., 97(11-12), 523-539. https://doi.org/10.1016/j.jweia.2009.07.010.
  46. Orf, L.G., Kantor, E. and Savory, E. (2012), "Simulation of a downburst-producing thunderstorm using a very high resolution three-dimensional cloud model", J. Wind Eng. Ind. Aerodyn., 104, 547-557. https://doi.org/10.1016/j.jweia.2012.02.020
  47. Oseguera, R. and Bowles, R. (1988), "A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow", NASA Technical Memorandum, 100632.
  48. Riera, J.D. and Nanni, L.F. (1989), "Pilot study of extreme wind velocities in a mixed climate considering wind orientation", J. Wind Eng. Ind. Aerod., 32, 11-20. https://doi.org/10.1016/0167-6105(89)90012-3.
  49. Rowcroft, J. (2011), "Vertical wind shear profiles in downburst events and the insufficiency of wind turbine design codes", Proceedings of the 13th International Conference on Wind Engineering, Amsterdam, Netherlands.
  50. Russell, L.R. and Schueller, G.F. (1974), "Probabilistic models for Texas gulf coast hurricane occurrences", J. Pet. Tech., March.
  51. Selvam, R. and Holmes, J.D. (1992), "Numerical simulation of thunderstorm downdrafts", J. Wind Eng. Ind. Aerod., 44(1-3), 2817-2825. https://doi.org/10.1016/0167-6105(92)90076-M.
  52. Shehata, A. and El Damatty, A. (2007), "Behaviour of guyed transmission line structures under downburst wind loading", Wind Struct., 10(3), 249-268. https://doi.org/10.12989/was.2007.10.3.249.
  53. Shehata, A.Y., El Damatty, A.A. and Savory, E. (2005), "Finite element modeling of transmission line under downburst wind loading", Finite Elements Analy. Des., 42, 71-89. https://doi.org/10.1016/j.finel.2005.05.005.
  54. Solari, G., Burlando, M., De Gaetano, P. and Repetto, M.P. (2015), "Characteristics of thunderstorms relevant to the wind loading of structures", Wind Struct., 20, 763-791. http://dx.doi.org/10.12989/was.2015.20.6.763.
  55. Solari, G., Repetto, M.P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M. and Parodi, M. (2012), "The wind forecast for safety management of port areas", J. Wind Eng. Ind. Aerod., 104-106, 266-277. https://doi.org/10.1016/j.jweia.2012.03.029.
  56. Tryggvason, B.V., Surry, D. and Davenport, A.G. (1976), "Predicting wind-induced response in hurricane zones", J. Struct. Div., 102(12), 2333-2350. https://doi.org/10.1061/JSDEAG.0004496
  57. Twisdale, L.A. and Vickery, P.J. (1992), "Research on thunderstorm wind design parameters", J. Wind Eng. Ind. Aerod., 41, 545-556. https://doi.org/10.1016/0167-6105(92)90461-I
  58. Vermeire, B.C., Orf, L.G. and Savory, E. (2011), "Improved modelling of downburst outflows for wind engineering applications using a cooling source approach", J. Wind Eng. Ind. Aerod., 99(8), 801-814. https://doi.org/10.1016/j.jweia.2011.03.003.
  59. Vickery, P.J., Masters, F.J., Powell, M.D. and Wadhera, D. (2009), "Hurricane hazard modeling: The past, present and future", J. Wind Eng. Ind Aerod., 97, 392-405. https://doi.org/10.1016/j.jweia.2009.05.005.
  60. Vickery, P.J., Skerlj, P.F. and L.A. Twisdale (2000a), "Simulation of hurricane risk in the U.S. using and empirical track model", J. Struct. Div., 126(10), 1222-1237. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).
  61. Vickery, P.J., Skerlj, P.F. Steckley, A.C. and L.A. Twisdale (2000b), "A hurricane wind field model for use in hurricane wind speed simulations", J. Struct. Div., 126(10), 1203-1221. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203).
  62. Vicroy, D. (1991), "A simple, analytical, axisymmetric microburst model for downdraft estimation", NASA Technical Memorandum, 10405.
  63. Vicroy, D. (1992), "Assessment of microburst models for downdraft estimation", J. Aircraft, 29(6), 1043-1048. https://doi.org/10.2514/3.46282.
  64. Wakimoto, R.M. (1982), "The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rains data", Weather Rev., 110, 1060-1082. https://doi.org/10.1175/1520-0493(1982)110%3C1060:TLCOTG%3E2.0.CO;2.
  65. Welzenbach, F. (2008), "Fallstudie zum 29. Juli 2008 - Microbursts im Sellrain und Inntal", Storm Case Studies.
  66. Wood, G.S., Kwok, K.C., Motteram, N.A. and Fletcher, D.F., (2001), "Physical and numerical modelling of thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 89(6), 535-552. https://doi.org/10.1016/S0167-6105(00)00090-8.
  67. Xu, Z. and Hangan, H. (2008), "Scale, boundary and inlet condition effects on impinging jets", J. Wind Eng. Ind. Aerod., 96(12), 2383-2402. https://doi.org/10.1016/j.jweia.2008.04.002.