DOI QR코드

DOI QR Code

개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study

  • 최순욱 (한국건설기술연구원 지하공간안전연구센터) ;
  • 이효범 (고려대학교 건축사회환경공학부) ;
  • 최항석 (고려대학교 건축사회환경공학부) ;
  • 장수호 (한국건설기술연구원 건설산업진흥본부) ;
  • 강태호 (한국건설기술연구원 지하공간안전연구센터) ;
  • 이철호 (한국건설기술연구원 지하공간안전연구센터)
  • Choi, Soon-wook (Underground Space Safety Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Hyobum (School of Civil Environmental and Architectural Engineering, Korea University) ;
  • Choi, Hangseok (School of Civil Environmental and Architectural Engineering, Korea University) ;
  • Chang, Soo-Ho (Construction Industry Promotion Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Tae-Ho (Underground Space Safety Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Chulho (Underground Space Safety Research Center, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2020.10.26
  • 심사 : 2020.10.28
  • 발행 : 2020.10.31

초록

EPB TBM의 굴진성능 예측은 터널 시공성 향상을 위해 매우 중요하며, 따라서 현재까지 TBM 굴진을 수치 해석적으로 모사하기 위한 다양한 시도들이 이루어져 왔다. 본 논문에서는 EPB TBM의 운전조건에 따른 굴진성능을 평가하기 위해 개별요소법(DEM, discrete element method)과 유한차분법(FDM, finite difference method)을 연계한 수치해석 모델을 사용하여 운전조건을 변경해가며 매개변수 해석을 수행하였다. 해석은 커터헤드의 회전속도를 2 rpm으로 일정하게 유지한 상태에서 굴진속도를 0.5, 1.0 mm/sec, 스크류 컨베이어의 회전속도를 5, 15, 25 rpm으로 조건을 변경해가며 수행되었다. 운전조건의 변화에 따라 측정되는 토크, 추력, 챔버압, 배토량을 비교하였으며 매개변수 해석 결과를 통해 개별요소법-유한차분법 연계 TBM 굴진해석 모델을 사용하여 최적 TBM 운전조건을 예측할 수 있음을 나타냈다.

A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

키워드

참고문헌

  1. British Tunnelling Society, 2005, Closed-face tunnelling machines and ground stability: A guideline for best practice, Thomas Telford.
  2. Choi, S-W., Lee, H., Choi, H., Chang, S-H., Kang, T-H., Lee, C., 2019, Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions, Tunnel & Underground Space, 29(6), 456-467. (in Korean) https://doi.org/10.7474/TUS.2019.29.6.456
  3. Choi, S-W., Park, B., Kang, T-H., Chang, S-H., Lee, C., 2018, Numerical Study on Medium-Diameter EPB Shield TBM by Discrete Element Method, Journal of Korean Geosynthetics Society, 17(4), 129-139. (in Korean) https://doi.org/10.12814/JKGSS.2018.17.4.129
  4. Hasanpour, R., 2014, Advance numerical simulation of tunneling by using a double shield TBM. Computers and Geotechnics, 57, 37-52. https://doi.org/10.1016/j.compgeo.2014.01.002
  5. Hu, X., He, C., Lai, X., Walton, G., Fu, W., and Fang, Y., 2020, A DEM-based study of the disturbance in dry sandy ground caused by EPB shield tunneling. Tunnelling and Underground Space Technology, 101, 103410. https://doi.org/10.1016/j.tust.2020.103410
  6. Itasca, 2019, Particle Flow Code in 3 Dimensions (PFC3D) 6.0 documentation, Minneapolis: Itasca Consulting Group.
  7. Itasca, 2020, Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) 7.0 documentation, Minneapolis: Itasca Consulting Group.
  8. Japanese Geotechnical Society, 地盤工学会, 2012, シールド工法 地盤工学.実務シリーズ 29.
  9. Kim, K., Oh, J., Lee, H., Kim, D., and Choi, H., 2018, Critical face pressure and backfill pressure in shield TBM tunneling on soft ground, Geomechanics and Engineering, 15(3) 823-831. https://doi.org/10.12989/GAE.2018.15.3.823
  10. Lambrughi, A., Rodriguez, L. M., and Castellanza, R., 2012, Development and validation of a 3D numerical model for TBM-EPB mechanised excavations, Computers and Geotechnics, 40, 97-113. https://doi.org/10.1016/j.compgeo.2011.10.004
  11. Lee, C., Chang, S-H., Choi, S-W., Park, B., Kang, T-H., Sim, J. K., 2017a, Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method, Journal of Korean Geosynthetics Society, 16(4), 163-176. (in Korean) https://doi.org/10.12814/JKGSS.2017.16.4.163
  12. Lee, C., Chang, S-H., Choi, S-W., Park, B., Kang, T-H., Sim, J. K., 2017b, Preliminary study on a spoke-type EPB shield TBM by discrete element method, Journal of Korean Tunnelling and Underground Space Association, 19(6), 1029-1044. (in Korean) https://doi.org/10.9711/KTAJ.2017.19.6.1029
  13. Lee, G-J., Kim, H., Kwon, T-H., Cho, G-C., Kang, S-H., 2019a., DEM numerical study for the effect of scraper direction on shield TBM excavation in soil, Journal of Korean Tunnelling and Underground Space Association, 21(5), 689-698. (in Korean) https://doi.org/10.9711/KTAJ.2019.21.5.689
  14. Lee, G-J., Kwon, T-H., Kim, H., 2019b., DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock, Journal of Korean Tunnelling and Underground Space Association, 21(1), 127-136. (in Korean) https://doi.org/10.9711/KTAJ.2019.21.1.127
  15. Lee, I-M., 2016, Geotechnical Principles of tunnel, 3rd Edition (in Korean)
  16. Maynar, M. J., Rodriguez, L. E., 2005, Discrete numerical model for analysis of earth pressure balance tunnel excavation, Journal of geotechnical and geoenvironmental engineering, 131(10), 1234-1242. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1234)
  17. Nematollahi, M., and Dias, D., 2019, Three-dimensional numerical simulation of pile-twin tunnels interaction-Case of the Shiraz subway line, Tunnelling and Underground Space Technology, 86, 75-88. https://doi.org/10.1016/j.tust.2018.12.002
  18. Qu, T., Wang, S., and Hu, Q., 2019, Coupled discrete element-finite difference method for analysing effects of cohesionless soil conditioning on tunneling behaviour of EPB shield, KSCE Journal of Civil Engineering, 23(10), 4538-4552. https://doi.org/10.1007/s12205-019-0473-8
  19. Wang, J., He, C., and Xu, G., 2019, Face Stability Analysis of EPB Shield Tunnels in Dry Granular Soils Considering Dynamic Excavation Process, Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002150