DOI QR코드

DOI QR Code

Wear and Mechanical Properties of B4C/Al6061 Composites Fabricated by Stir Casting and Rolling Process

교반주조 및 압연공정으로 제조된 B4C/Al6061 금속복합재료의 마모 및 기계적 특성 연구

  • Lee, Donghyun (Composites Research Division, Korea Institute of Materials Science) ;
  • Oh, Kanghun (Composites Research Division, Korea Institute of Materials Science) ;
  • Kim, Junghwan (Composites Research Division, Korea Institute of Materials Science) ;
  • Kim, Yangdo (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sang-Bok (Composites Research Division, Korea Institute of Materials Science) ;
  • Cho, Seungchan (Composites Research Division, Korea Institute of Materials Science)
  • Received : 2020.10.12
  • Accepted : 2020.10.25
  • Published : 2020.10.31

Abstract

In this study, aluminum (Al) alloy matrix composites in which B4C particles were uniformly dispersed was manufactured through stir casting followed by hot rolling process. The microstructure, mechanical properties, and wear resistance properties of the prepared composites were analyzed. The composite in which the 40 ㎛ sized B4C particles were uniformly dispersed increased the tensile strength and improved wear performance as the volume ratio of the reinforcement increased. In the case of the 20 vol.% composite, the tensile strength was 292 MPa, which was 155% higher than that of the Al6061. As a result of the wear resistance test, the wear width and depth of the 20 vol.% B4C/Al6061 composites were 856 ㎛, and 36 ㎛, and the friction coefficient was 0.382, which were considerably superior to Al6061.

본 연구에서는 교반주조 공정을 통해 B4C 입자가 균일하게 분산된 알루미늄 금속복합재료를 제조하고 후 공정으로 열간압연을 수행하였다. 제조된 복합재료의 미세조직, 기계적 특성 및 내마모 특성에 대해 분석하였다. 40 ㎛ 크기의 B4C 입자가 균일하게 분산된 복합재료는 강화재의 체적율이 증가함에 따라 인장강도는 증가하였으며, 마모 성능도 개선되었다. 20 vol.% 복합재료의 경우 인장강도 값은 292 MPa로 기지재인 Al6061 대비 155% 증가하였다. 내마모시험 결과 20 vol.% 복합재료의 경우 마모 너비와 깊이가 각각 856 ㎛, 36 ㎛이며, 마찰계수는 0.382로 Al6061 대비 상당히 우수한 내마모 특성을 나타내었다.

Keywords

References

  1. Thuault, A., Marinel, S., Savary, E., Heuguet. R., Saunier, S., Goeuriot, D., and Agrawal, D., "Processing of Reaction-bonded $B_4C$-SiC Composites in a Single-mode Microwave Cavity", Ceramics International, Vol. 39, 2013, pp. 1215-1219. https://doi.org/10.1016/j.ceramint.2012.07.047
  2. Karabulut, S., Karakoc, H., and Citak, R., "Influence of $B_4C$ Particle Reinforcement on Menchanical and Machining Properties of Al6061/$B_4C$ Composites", Composites Part B: Engineering, Vol. 101, 2016, pp. 87-98. https://doi.org/10.1016/j.compositesb.2016.07.006
  3. Mandal, A., Murty, B.S., and Chakraborty, M., "Wear Behavior of Near Eutectic Al-Si Alloy Reinforced with in-situ $TiB_2$ Particles", Materials Science and Engineering A, Vol. 506, 2009, pp. 27-33. https://doi.org/10.1016/j.msea.2008.11.007
  4. Saraswat, R., Yadav, A., and Tyagi, R., "Sliding Wear Behaviour of $Al-B_4C$ Cast Composites Under Dry Contact", Materialstoday: Proceedings, Vol. 5, 2018, pp. 16963-16972.
  5. Ipek, R., "Adhesive Wear Behavior of $B_4C$ and SiC Reinforced 4147 Al Matrix Composite($Al/B_4C-Al/SiC$)", Joual of Materials Processing Technology, Vol. 162-163, 2005, pp. 71-75. https://doi.org/10.1016/j.jmatprotec.2005.02.207
  6. Shorowordi, K.M., and Laoui, T., "Microstructure and Interface Characteristics of $B_4C$, SiC and $Al_2O_3$ Reinforced Al Matrix Composites: A Comparative Study", Journal of Materials Processing Technology, Vol. 142, 2003, pp. 738-743. https://doi.org/10.1016/S0924-0136(03)00815-X
  7. Kerti, I., and Toptan, F., "Microstructural Variations in cast $B_4C$-reinforced Aluminium Matrix Composites (AMCs)", Materials Letters, Vol. 62, 2008, pp. 1215-1218. https://doi.org/10.1016/j.matlet.2007.08.015
  8. Lakshmikantha, R.G., and Auradi, V., "Processing and Evaluation of $Al/B_4C$ Particulate MMC's: Tensile Strength and Wear Properties under Different Elevated Temperature Test Condition", Materials Today: Proceedings, Vol. 28, 2020, pp. 504-509.
  9. Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., "Moron Carbide: Structure, Properties, and Stability under Stress", Journal of the American Ceramic Society, Vol. 94, 2011, pp. 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x
  10. Wang, J., Lin, W., Jiang, Z., Duan, L., and Yang, G., "The Preparation and Properties of $SiCw/B_4C$ Composites Infiltrated with Molten Silicon", Ceramics International, Vol. 40, 2014, pp. 6793-6798. https://doi.org/10.1016/j.ceramint.2013.12.003
  11. Manna, A., and Bhattacharayya, B., "A Study on Machinability of Al/SiC-MMC", Journal of Materials Processing Technology, Vol. 140, 2003, pp. 711-716. https://doi.org/10.1016/S0924-0136(03)00905-1
  12. Ibrahim, M.F., Ammar, H.R., Samuel, A.M., Soliman, M.S., and Samuel, F.H., "On the Impact Toughness of Al-15 vol.% $B_4C$ Metal Matrix Composites", Composites Part B: Engineering, Vol. 79, 2015, pp. 83-94. https://doi.org/10.1016/j.compositesb.2015.04.018
  13. Baradeswaran, A., and Perumal, A.E., "Influence of $B_4C$ on the Tribological and Mechanical Properties of Al 7075-$B_4C$ Composites", Composites Part B: Engineering, Vol. 54, 2013, pp. 146-152. https://doi.org/10.1016/j.compositesb.2013.05.012
  14. Karabulut, S., Gokmen, U., and Cinici H., "Study on the Mechanical and Drilling Properties of AA7039 Composites Reinforced with $Al_2O_3/B_4C$/SiC Particles", Composites Part B: Engineering, Vol. 93, 2016, pp. 43-55. https://doi.org/10.1016/j.compositesb.2016.02.054
  15. Suh, N.P., "The Delamination Theory of Wear", Wear, Vol. 25, 1973, pp. 111-124. https://doi.org/10.1016/0043-1648(73)90125-7