참고문헌
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Bo, Y., Xiaoyun, J. and Huanying, X. (2015), "A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation", Numer. Algor., 68(4), 923-950. https://doi.org/10.1007/s11075-014-9877-1.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity. a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1007/s11075-014-9877-1.
- Ezzat, M.A. (2004), "Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region", Int. J. Eng. Sci., 42, 1503-1519. https://doi.org/10.1016/j.ijengsci.2003.09.013.
- Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020.
- Ezzat, M.A. and El-Bary, A.A. (2017a), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
- Ezzat, M.A. and El-Bary, A.A. (2017b), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel. Compos. Struct., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177.
- Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88, 35-48. https://doi.org/10.1139/P09-100.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23, 545-553. https://doi.org/10.1080/15376494.2015.1007189.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2016), "Electro-thermoelasticity theory with memory-dependent derivative heat transfer", Int. J. Eng. Sci., 99, 22-38. https://doi.org/10.1016/j.ijengsci.2015.10.011.
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart. Struc. Syst., 19, 539-551. http://dx.doi.org/10.12989/sss.2017.19.5.539.
- Ezzat, M.A., Othman, M.I. and El-Karamany, A.S. (2001), "State space approach to generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(3), 283-302. https://doi.org/10.1016/S0020-7225(01)00045-3.
- Ezzat, M.A., Zakaria, M., Shaker, O. and Barakat, F. (1996), "State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium", Acta Mech., 119, 147-164. https://doi.org/10.1007/BF01274245.
- Fox, N. (1969), "Generalized thermoelasticity", Int. J. Eng. Sci., 7, 437-445. https://doi.org/10.1080/014957399280832.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689.
- He, T., Zhang, P., Xu, C. and Li, Y. (2019), "Transient response analysis of a spherical shell embedded in an infinite thermoelastic medium based on a memory-dependent generalized thermoelasticity", J. Therm. Stress., 48 (8), 943-961. https://doi.org/10.1080/01495739.2019.1610342.
- Hetnarski, R.B. and Ignaczak, J. (2000), "Nonclassical dynamical thermoelasticity", Int. J. Solid. Struct., 37, 215-224. https://doi.org/10.1016/S0020-7683(99)00089-X.
- Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metal., 157, 467-474. https://doi.org/10.1016/j.synthmet.2007.05.003.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Ignaczak, J. and Ostoja-starzeweski, M. (2009), Thermoelasticity with Finite Wave Speeds, Oxford University Press, Oxford, UK.
- Kothari, S. and Mukhopadhyay, S. (2011), "A problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stress., 34, 724-739. https://doi.org/10.1080/01495739.2010.550834.
- Lata, P. (2018a), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lata, P. (2018b), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Comps. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
- Lata, P. (2019), "Time harmonic interactions in fractional thermoelastic diffusive thick circular plate", Coupl. Syst. Mech., 8(1), 39-53. https://doi.org/10.12989/csm.2019.8.1.039.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22, 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567.
- Li, Y., Zhang, P., Li, C. and He, Y. (2019), "Fractional order and memory-dependent analysis to the dynamic response of a bi-layered structure due to laser pulse heating", Int. J. Heat Mass Trans., 44(12), 118664. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118664.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Comps. B: Eng., 126(1), 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
- Marin, M. and Florea, O. (2014), "On temporal behavior of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22, 169-188. https://doi.org/10.2478/auom-2014-0014.
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continu. Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by Lagrange's identity", Bound. Value Prob., 2013, 135. https://doi.org/10.1186/1687-2770-2013-135.
- Marin, M., Baleanu, D. and Valse, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
- Morelli, D.T. (1997), Thermoelectric Devices, Eds. G.L. Trigg, and E.H. Immergut, Encyclopedia of Applied Physics, Wiley-VCH, New York.
- Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stress., 32, 341-360. https://doi.org/10.1080/01495730802637183.
- Othman, M.I., Ezzat, M.A., Zaki, S.A. and El-Karamany, A.S. (2002), "Generalized thermo-viscoelastic plane waves with two relaxation times", Int. J. Eng. Sci., 40, 1329-1347. https://doi.org/10.1016/S0020-7225(02)00023-X.
- Povstenko, Y.Z. (2004), "Fractional heat conductive and associated thermal stress", J. Therm. Stress., 28, 83-102. https://doi.org/10.1080/014957390523741.
- Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
- Shaw, S. (2019), "Theory of generalized thermoelasticity with memory-dependent derivatives", J. Eng. Mech., 145, 04019003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001569.
- Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 191, 231-251. https://doi.org/10.1017/S0022112079000136.
- Shereif, H.H. (1992), "Fundamental solution for thermoelasticity with two relaxation times", Int. J. Eng. Sci., 30(7), 861-870. https://doi.org/10.1016/0020-7225(92)90015-9.
- Sherief, H.H. and El-Latief, A.M. (2016), "Modeling of variable Lame's Modulii for a FGM generalized thermoelastic half space", Lat. Am. J. Solid. Struct., 13, 715-730. https://doi.org/10.1590/1679-78252086.
- Sherief, H.H., El-Said, A.A. and Abd El-Latief, A. (2010), "Fractional order theory of thermo-elasticity", Int. J. Solid. Struct., 47, 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034.
- Tiwari, R. and Mukhopadhyay, S. (2018), "Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives", Math. Mech. Solid., 23, 820-834. https://doi.org/10.1177/1081286517692020.
- Tritt, T.M. (1999), "Thermoelectric materials new directions and approaches", Mat. Res. Soc. Symp. Proc., 545, 233-246.
- Tritt, T.M. (2000), Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research, Academic Press, San Diego.
- Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appl., 62, 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.
- Xue, Z.N., Chen, Z.T. and Tian, X.G. (2018), "Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model", Eng. Fract. Mech., 200, 479-498. https://doi.org/10.1016/j.engfracmech.2018.08.018.
- Youssef, H. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat. Transf., 132(6), 061301-7. https://doi.org/10.1115/1.4000705.
- Yu, Y.J., Tian, X.G. and Lu, T.J. (2013), "Fractional order generalized electro-magnetothermo-elasticity", Eur. J. Mech., A/Solid., 42, 188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006.
- Zenkour, A.M. (2017), "Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak", Adv. Aircraft Spacecraft Sci., 4(3), 267-280. http://dx.doi.org/10.12989/aas.2017.4.3.267.
- Zhang, H., Xiaoyun, J. and Xiu, Y. (2018), "A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem", Appl. Math. Comput., 320, 302-318. https://doi.org/10.1016/j.amc.2017.09.040.