Acknowledgement
The authors would like to thank the referee for a very careful reading of the manuscript and many useful comments.
References
- A. Ancona, Elliptic operators, conormal derivatives and positive parts of functions, J. Funct. Anal. 257 (2009), no. 7, 2124-2158. https://doi.org/10.1016/j.jfa.2008.12.019
- H. Brezis, On a conjecture of J. Serrin, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19 (2008), no. 4, 335-338. https://doi.org/10.4171/RLM/529
- S.-S. Byun and L. Wang, Elliptic equations with measurable coefficients in Reifenberg domains, Adv. Math. 225 (2010), no. 5, 2648-2673. https://doi.org/10.1016/j.aim.2010.05.014
- J. Choi and H. Dong, Gradient estimates for Stokes systems in domains, Dyn. Partial Differ. Equ. 16 (2019), no. 1, 1-24. https://doi.org/10.4310/dpde.2019.v16.n1.a1
- J. Choi and H. Dong, Gradient estimates for Stokes systems with Dini mean oscillation coefficients, J. Differential Equations 266 (2019), no. 8, 4451-4509. https://doi.org/10.1016/j.jde.2018.10.001
- J. Choi, H. Dong, and D. Kim, Conormal derivative problems for stationary Stokes system in Sobolev spaces, Discrete Contin. Dyn. Syst. 38 (2018), no. 5, 2349-2374. https://doi.org/10.3934/dcds.2018097
- H. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal. 205 (2012), no. 1, 119-149. https://doi.org/10.1007/s00205-012-0501-z
-
H. Dong, L. Escauriaza, and S. Kim, On
$C^1$ ,$C^2$ , and weak type-(1, 1) estimates for linear elliptic operators: part II, Math. Ann. 370 (2018), no. 1-2, 447-489. https://doi.org/10.1007/s00208-017-1603-6 - H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients, Arch. Ration. Mech. Anal. 196 (2010), no. 1, 25-70. https://doi.org/10.1007/s00205-009-0228-7
- H. Dong and D. Kim, Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains, J. Funct. Anal. 261 (2011), no. 11, 3279-3327. https://doi.org/10.1016/j.jfa.2011.08.001
- H. Dong and D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal. 43 (2011), no. 3, 1075-1098. https://doi.org/10.1137/100794614
- H. Dong and S. Kim, Partial Schauder estimates for second-order elliptic and parabolic equations, Calc. Var. Partial Differential Equations 40 (2011), no. 3-4, 481-500. https://doi.org/10.1007/s00526-010-0348-9
-
H. Dong and S. Kim, On
$C^1$ ,$C^2$ , and weak type-(1, 1) estimates for linear elliptic operators, Comm. Partial Differential Equations 42 (2017), no. 3, 417-435. https://doi.org/10.1080/03605302.2017.1278773 - H. Dong and S. Kim, Partial Schauder estimates for second-order elliptic and parabolic equations: a revisit, Int. Math. Res. Not. IMRN 2019 (2019), no. 7, 2085-2136. https://doi.org/10.1093/imrn/rnx180
- H. Dong, J. Lee, and S. Kim, On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, arXiv:1801.09836.
-
H. Dong and Z. Li,
$C^2$ estimate for oblique derivative problem with mean Dini coefficients, arXiv:1904.02766. - H. Dong and J. Xiong, Boundary gradient estimates for parabolic and elliptic systems from linear laminates, Int. Math. Res. Not. IMRN 2015 (2015), no. 17, 7734-7756. https://doi.org/10.1093/imrn/rnu185
- H. Dong and L. Xu, Hessian estimates for non-divergence form elliptic equations arising from composite materials, arXiv:1904.10950.
- H. Dong and L. Xu, Gradient estimates for divergence form elliptic systems arising from composite material, SIAM J. Math. Anal. 51 (2019), no. 3, 2444-2478. https://doi.org/10.1137/18M1226658
-
L. Escauriaza and S. Montaner, Some remarks on the
$L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), no. 1, 49-63. https://doi.org/10.4171/RLM/751 - P. Fife, Schauder estimates under incomplete Holder continuity assumptions, Pacific J. Math. 13 (1963), 511-550. https://doi.org/10.2140/pjm.1963.13.511
- M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1993.
- Y. Jin, D. Li, and X.-J. Wang, Regularity and analyticity of solutions in a direction for elliptic equations, Pacific J. Math. 276 (2015), no. 2, 419-436. https://doi.org/10.2140/pjm.2015.276.419
- G. Tian and X.-J. Wang, Partial regularity for elliptic equations, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 899-913. https://doi.org/10.3934/dcds.2010.28.899