Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B4004460).
References
- L. Ambrozio, On static three-manifolds with positive scalar curvature, J. Differential Geom. 107 (2017), no. 1, 1-45. https://doi.org/10.4310/jdg/1505268028
- H. Baltazar, R. Batista, and K. Bezerra, On the volume functional of compact manifolds with boundary with harmonic Weyl tensor, arXiv:1710.06247v1 [math.DG].
- H. Baltazar and E. Ribeiro, Jr., Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary, Pacific J. Math. 297 (2018), no. 1, 29-45. https://doi.org/10.2140/pjm.2018.297.29
- A. Barros and E. Ribeiro, Jr., Critical point equation on four-dimensional compact manifolds, Math. Nachr. 287 (2014), no. 14-15, 1618-1623. https://doi.org/10.1002/mana.201300149
- R. Batista, R. Diogenes, M. Ranieri, and E. Ribeiro Jr., Critical metrics of the volume functional on compact three-manifolds with smooth boundary, J. Geom. Anal. 27 (2017), no. 2, 1530-1547. https://doi.org/10.1007/s12220-016-9730-y
- A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
- J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. https://doi.org/10.1007/PL00005533
- J. Corvino, M. Eichmair, and P. Miao, Deformation of scalar curvature and volume, Math. Ann. 357 (2013), no. 2, 551-584. https://doi.org/10.1007/s00208-013-0903-8
- A. Derdzinski, Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Math. Z. 172 (1980), no. 3, 273-280. https://doi.org/10.1007/BF01215090
- D. DeTurck and H. Goldschmidt, Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor, Forum Math. 1 (1989), no. 4, 377-394. https://doi.org/10.1515/form.1989.1.377
- J. Kim, On a classification of 4-d gradient Ricci solitons with harmonic Weyl curvature, J. Geom. Anal. 27 (2017), no. 2, 986-1012. https://doi.org/10.1007/s12220-016-9707-x
- J. Kim and J. Shin, Four-dimensional static and related critical spaces with harmonic curvature, Pacific J. Math. 295 (2018), no. 2, 429-462. https://doi.org/10.2140/pjm.2018.295.429
- O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. https://doi.org/10.2969/jmsj/03440665
- P. Miao and L.-F. Tam, Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc. 363 (2011), no. 6, 2907-2937. https://doi.org/10.1090/S0002-9947-2011-05195-0
- J. Qing and W. Yuan, On scalar curvature rigidity of vacuum static spaces, Math. Ann. 365 (2016), no. 3-4, 1257-1277. https://doi.org/10.1007/s00208-015-1302-0
- J. Shin, On the classification of 4-dimensional (m; )-quasi-Einstein manifolds with harmonic Weyl curvature, Ann. Global Anal. Geom. 51 (2017), no. 4, 379-399. https://doi.org/10.1007/s10455-017-9542-8
- G. Yun, J. Chang, and S. Hwang, Total scalar curvature and harmonic curvature, Tai-wanese J. Math. 18 (2014), no. 5, 1439-1458. https://doi.org/10.11650/tjm.18.2014.1489
- G. Yun and S. Hwang, Rigidity of generalized Bach-flat vacuum static spaces, J. Geom. Phys. 121 (2017), 195-205. https://doi.org/10.1016/j.geomphys.2017.07.016