References
- H. Cartan, Sur les groupes de transformations analytiques, Actualites scientifiques et industrielles: Exposes mathematiques. Hermann et cie, 1935.
-
H. Donnelly,
$L_2$ cohomology of pseudoconvex domains with complete Kahler metric, Michigan Math. J. 41 (1994), no. 3, 433-442. https://doi.org/10.1307/mmj/1029005071 -
H. Donnelly,
$L_2$ cohomology of the Bergman metric for weakly pseudoconvex domains, Illinois J. Math. 41 (1997), no. 1, 151-160. http://projecteuclid.org/euclid.ijm/ 1255985851 https://doi.org/10.1215/ijm/1255985851 -
H. Donnelly and C. Fefferman,
$L^2$ -cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593-618. https://doi.org/10.2307/2006983 - S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3-92.
-
M. Gromov, Kahler hyperbolicity and
$L_2$ -Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263-292. https://doi.org/10.4310/jdg/1214446039 - C. Kai and T. Ohsawa, A note on the Bergman metric of bounded homogeneous domains, Nagoya Math. J. 186 (2007), 157-163. https://doi.org/10.1017/S0027763000009399
- W. Kaup, Y. Matsushima, and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475-498. https://doi.org/10.2307/2373335
- R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, IL, 1971.
- E. B. Vinberg, S. G. Gindikin, and I. I. Pjatecki-Sapiro, Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obsc. 12 (1963), 359-388.