DOI QR코드

DOI QR Code

A CERTAIN KÄHLER POTENTIAL OF THE POINCARÉ METRIC AND ITS CHARACTERIZATION

  • Choi, Young-Jun (Department of Mathematics Pusan National University) ;
  • Lee, Kang-Hyurk (Department of Mathematics and Research Institute of Natural Science Gyeongsang National University) ;
  • Yoo, Sungmin (Center for Geometry and Physics Institute for Basic Science (IBS))
  • Received : 2019.09.17
  • Accepted : 2019.12.04
  • Published : 2020.11.01

Abstract

We will show a rigidity of a Kähler potential of the Poincaré metric with a constant length differential.

Keywords

References

  1. H. Cartan, Sur les groupes de transformations analytiques, Actualites scientifiques et industrielles: Exposes mathematiques. Hermann et cie, 1935.
  2. H. Donnelly, $L_2$ cohomology of pseudoconvex domains with complete Kahler metric, Michigan Math. J. 41 (1994), no. 3, 433-442. https://doi.org/10.1307/mmj/1029005071
  3. H. Donnelly, $L_2$ cohomology of the Bergman metric for weakly pseudoconvex domains, Illinois J. Math. 41 (1997), no. 1, 151-160. http://projecteuclid.org/euclid.ijm/ 1255985851 https://doi.org/10.1215/ijm/1255985851
  4. H. Donnelly and C. Fefferman, $L^2$-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593-618. https://doi.org/10.2307/2006983
  5. S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3-92.
  6. M. Gromov, Kahler hyperbolicity and $L_2$-Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263-292. https://doi.org/10.4310/jdg/1214446039
  7. C. Kai and T. Ohsawa, A note on the Bergman metric of bounded homogeneous domains, Nagoya Math. J. 186 (2007), 157-163. https://doi.org/10.1017/S0027763000009399
  8. W. Kaup, Y. Matsushima, and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math. 92 (1970), 475-498. https://doi.org/10.2307/2373335
  9. R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, IL, 1971.
  10. E. B. Vinberg, S. G. Gindikin, and I. I. Pjatecki-Sapiro, Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obsc. 12 (1963), 359-388.