Acknowledgement
The study presented herein is supported by the National Natural Science Foundation of China (Nos. 51808112; 51678145), the Natural Science Foundation of Jiangsu Province (BK20180155), and the Six Talent Peaks Project in Jiangsu Province (No. XNY-047). The authors are grateful for their support.
References
- Ai, Z.Y. and Li, Z.X. (2015), "Dynamic analysis of a laterally loaded pile in a transversely isotropic multilayered half-space", Eng. Anal. Bound Elem., 54, 68-75. https://doi.org/10.1016/j.enganabound.2015.01.008.
- Anoyatis, G. and Mylonakis, G. (2012), "Dynamic Winkler modulus for axially loaded piles", Geotechnique, 62(6), 521-536. https://doi.org/10.1680/geot.11.P.052.
- Basu, D., Prezzi, M., Salgado, R. and Chakraborty, T. (2008), "Settlement analysis of piles with rectangular cross sections in multi-layered soils", Comput. Geotech., 35(4), 563-575. https://doi.org/10.1016/j.compgeo.2007.09.001.
- Cai, Y., Liu, Z., Li, T., Yu, J. and Wang, N. (2020), "Vertical dynamic response of a pile embedded in radially inhomogeneous soil based on fictitious soil pile model", Soil Dyn. Earthq. Eng., 132, 106038. https://doi.org/10.1016/j.soildyn.2020.106038.
- Cui, C.Y., Zhang, S.P., Yang, G. and Li, X.F. (2016), "Vertical vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock", J. Cent. South U., 23(1), 220-232. https://doi.org/10.1007/s11771-016-3065-5.
- Cui, C.Y., Meng, K., Wu, Y.J., Chapman, D. and Liang, Z.M. (2018a), "Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation", Geomech. Eng., 16(6), 609-618. https://doi.org/10.12989/gae.2018.16.6.609.
- Cui, C., Zhang, S., Chapman, D. and Meng, K. (2018b), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. https://doi.org/10.12989/gae.2018.15.2.793.
- Das, Y.C. and Sargand, S.M. (1999), "Forced vibrations of laterally loaded piles", Int. J. Solids Struct., 36(33), 4975-4989. https://doi.org/10.1016/S0020-7683(98)00231-5.
- Dym, C.L. and Shames, I.H. (1973), Solid Mechanics: A Variational Approach, McGraw-Hill, New York, U.S.A.
- El Gendy, M., Ibrahim, H. and El Arabi, I. (2018), "Modeling single barrettes as elastic support by CCT", Malaysian J. Civ. Eng., 30(2),296-312. https://doi.org/10.11113/mjce.v30n2.481.
- El Gendy, M., Ibrahim, H. and El Arabi, I. (2019), "Composed coefficient technique for barrette group", Malaysian J. Civ. Eng., 31(1), 23-33. https://doi.org/10.11113/mjce.v31n1.510.
- El Wakil, A.Z. and Nazir, A.K. (2013), "Behavior of laterally loaded small scale barrettes in sand", Ain Shams Eng. J., 4(3), 343-350. http://doi.org/10.1016/j.asej.2012.10.011.
- Fellenius, B.H., Altaee, A., Kulesza, R. and Hayes, J. (1999), "Ocell testing and FE analysis of 28-m-deep barrette in Manila, Philippines", J. Geotech. Geoenviron. Eng., 125(7), 566-575. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(566).
- Gan, S., Zheng, C., Kouretzis, G. and Ding, X. (2020), "Vertical vibration of piles in viscoelastic non-uniform soil overlying a rigid base", Acta Geotech., 15, 1321-1330. https://doi.org/10.1007/s11440-019-00833-7.
- Guo, W.D. and Lee, F.H. (2001), "Load transfer approach for laterally loaded piles", Int. J. Numer. Anal. Meth. Geomech., 25(11), 1101-1129. https://doi.org/10.1002/nag.169.
- Gupta, B.K. and Basu, D. (2016a), "Analysis of laterally loaded rigid monopiles and poles in multilayered linearly varying soil", Comput. Geotech., 72, 114-125. https://doi.org/10.1016/j.compgeo.2015.11.008.
- Gupta, B.K. and Basu, D. (2016b), "Response of laterally loaded rigid monopiles and poles in multi-layered elastic soil", Can. Geotech. J., 53(8), 1281-1292. https://doi.org/10.1139/cgj-2015-0520.
- Gupta, B.K. and Basu, D. (2017), "Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil", Soils Found., 57(1), 92-110. https://doi.org/10.1016/j.sandf.2017.01.007.
- Gupta, B.K. and Basu, D. (2018), "Applicability of Timoshenko, Euler-Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles", Geotechnique, 68(9), 772-785. https://doi.org/10.1680/jgeot.16.P.244.
- Gupta, B.K. and Basu, D. (2018), "Dynamic analysis of axially loaded end-bearing pile in a homogeneous viscoelastic soil", Soil Dyn. Earth. Eng., 111, 31-40. https://doi.org/10.1016/j.soildyn.2018.04.019.
- Hirai, H. (2014), "Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach", Int. J. Numer. Anal. Meth. Geomech., 38(12), 1298-1320. https://doi.org/10.1002/nag.227.
- Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
- Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A.
- Kuhlemeyer, R.L. (1979), "Static and dynamic laterally loaded floating piles", J. Geotech. Eng., 105, 289-304.
- Lee, K. and Xiao, Z. (1999), "A new analytical model for settlement analysis of a single pile in multi-layered soil", Soils Found., 39(5), 131-143. https://doi.org/10.3208/sandf.39.5_131.
- Lei, G., Hong, X. and Shi, J. (2005), "Stata-of-the-art review on barrette", China Civ. Eng. J., 38(4), 103-110 (in Chinese). https://doi.org/10.3321/j.issn:1000-131X.2005.04.017.
- Lei, G.H., Hong, X. and Shi, J.Y. (2007a), "Approximate threedimensional analysis of rectangular barrette-soil-cap interaction", Can. Geotech. J., 44(7),781-796. https://doi.org/10.1139/t07-017.
- Lei, G.H. and Ng, C.W. (2007b), "Rectangular barrettes and circular bored piles in saprolites", Proc. Inst. Civ. Eng. Geotech. Eng., 160(4), 237-242. https://doi.org/10.1680/geng.2007.160.4.237.
- Liu, W. and Novak, M. (1994), "Dynamic response of single piles embedded in transversely isotropic layered media", Earthq. Eng. Struct. Dyn., 23(11), 1239-1257. https://doi.org/10.1002/eqe.4290231106.
- Maeso, O., Aznarez, J.J. and Garcia, F. (2005), "Dynamic impedances of piles and groups of piles in saturated soils", Comput. Struct., 83(10-11), 769-782. https://doi.org/10.1016/j.compstruc.2004.10.015.
- Mamoon, S.M., Kaynia, A.M. and Banerjee, P.K. (1990), "Frequency domain dynamic analysis of piles and pile groups", J. Eng. Mech., 116(10), 2237-2257. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:10(2237).
- Michaelides, O., Gazetas, G., Bouckovalas, G. and Chrysikou, E. (1998), "Approximate non-linear dynamic axial response of piles", Geotechnique, 48(1), 33-53. https://doi.org/10.1680/geot.1998.48.1.33.
- Millan, M.A. and Dominguez, J. (2009), "Simplified BEM/FEM model for dynamic analysis of structures on piles and pile groups in viscoelastic and poroelastic soils", Eng. Anal. Bound Elem., 33(1), 25-34. https://doi.org/10.1016/j.enganabound.2008.04.003.
- Mylonakis, G. (2001), "Elastodynamic model for large-diameter end-bearing shafts", Soils Found., 41(3), 31-44. https://doi.org/10.3208/sandf.41.3_31.
- Mylonakis, G. and Gazetas, G. (1998), "Settlement and additional internal forces of grouped piles in layered soil", Geotechnique, 48(1), 55-72. https://doi.org/10.1680/geot.1998.48.1.55.
- Ng, C.W. and Lei, G.H. (2003), "Performance of long rectangular barrettes in granitic saprolites", J. Geotech. Geoenviron. Eng., 129(8), 685-696. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(685).
- Ng, C.W., Rigby, D.B., Ng, S.W. and Lei, G.H. (2000), "Field studies of well-instrumented barrette in Hong Kong", J. Geotech. Geoenviron. Eng., 126(1), 60-73. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(60).
- Nogami, T. and Konagai, K. (1987), "Dynamic response of vertically loaded nonlinear pile foundations", J. Geotech. Eng., 113(2), 147-160. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:2(147).
- Padron, L.A., Aznarez, J.J. and Maeso, O. (2007), "BEM-FEM coupling model for the dynamic analysis of piles and pile groups", Eng. Anal. Bound Elem., 31(6), 473-484. https://doi.org/10.1016/j.enganabound.2006.11.001.
- Poulos, H.G. (1989), "Pile behaviour-theory and application", Geotechnique, 39(3), 365-415. https://doi.org/10.1680/geot.1989.39.3.365.
- Randolph, M.F. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31(2), 247-259. https://doi.org/10.1680/geot.1981.31.2.247.
- Seo, H., Basu, D., Prezzi, M. and Salgado, R. (2009), "Loadsettlement response of rectangular and circular piles in multilayered soil", J. Geotech. Geoenviron. Eng., 135(3), 420-430. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(420).
- Sun, K. (1994a), "Laterally loaded piles in elastic media", J. Geotech. Eng., 120(8), 1324-1344. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1324).
- Sun, K. (1994b), "A numerical method for laterally loaded piles", Comput. Geotech., 16(4), 263-289. https://doi.org/10.1016/0266-352X(94)90011-6.
- Tehrani, F.S., Salgado, R. and Prezzi, M. (2016), "Analysis of axial loading of pile groups in multilayered elastic soil", Int. J. Geomech., 16(2), 04015063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000540.
- Ukritchon, B. and Keawsawasvong, S. (2018), "Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism", KSCE J. Civ. Eng., 22(7), 2256-2265. https://doi.org/10.1007/s12205-017-0062-7.
- Vallabhan, C.G. and Das, Y.C. (1988), "Parametric study of beams on elastic foundations", J. Eng. Mech., 114(12), 2072-2082. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2072)
- Vallabhan, C.G. and Das, Y.C. (1991a), "Modified Vlasov model for beams on elastic foundations", J. Geotech. Eng., 117(6), 956-966. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(956).
- Vallabhan, C.G. and Das, Y.C. (1991b), "Analysis of circular tank foundations", J. Eng. Mech., 117(4), 789-797. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(789).
- Vallabhan, C.G. and Mustafa, G. (1996), "A new model for the analysis of settlement of drilled piers", Int. J. Numer. Anal. Meth. Geomech., 20(2), 143-152. https://doi.org/10.1002/(SICI)10969853(199602)20:2<143::AID-NAG812>3.0.CO;2-U.
- Veletsos, A.S. and Dotson, K.W. (1986), "Impedances of soil layer with disturbed boundary zone", J. Geotech. Eng., 112(3), 363-368. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(363).
- Wang, K., Wu, W., Zhang, Z. and Leo, C. J. (2010), "Vertical dynamic response of an inhomogeneous viscoelastic pile", Comput. Geotech., 37(4), 536-544. https://doi.org/10.1016/j.compgeo.2010.03.001.
- Wu, W.B., Liu, H., El Naggar, M.H., Mei, G.X. and Jiang, G.S. (2016), "Torsional dynamic response of a pile embedded in layered soil based on the fctitious soil pile model", Comput. Geotech., 80, 190-198. https://doi.org/10.1016/j.compgeo.2016.06.013.
- Wu, W.B., Liu, H., Yang, X.Y., Jiang, G.S., El Naggar, M.H., Mei, G.X. and Liang, R.Z. (2020), "New method to calculate apparent phase velocity of open-ended pipe pile", Can. Geotech. J., 57(1), 127-138. https://doi.org/10.1139/cgj-2018-0816.
- Wu, W.B., Wang, K.H., Zhang, Z.Q. and Leo, C.J. (2013), "Soilpile interaction in the pile vertical vibration considering true three-dimensional wave effect of soil", Int. J. Numer. Anal. Meth. Geomech., 37(17), 2860-2876. https://doi.org/10.1002/nag.2164.
- Yang, D.Y. and Wang, K.H. (2010), "Vertical vibration of pile based on fctitious soil-pile model in inhomogeneous soil", J. Zhejiang Univ., 44(10), 2021-2028 (in Chinese). https://doi.org/10.3785/j.issn.1008-973X.2010.10.030.
- Zhang, L.M. (2003), "Behavior of laterally loaded large-section barrettes", J. Geotech. Geoenviron. Eng., 129(7), 639-648. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(639).
- Zheng, C., Ding, X., Li, P. and Fu, Q. (2015), "Vertical impedance of an end-bearing pile in viscoelastic soil", Int. J. Numer. Anal. Meth. Geomech., 39(6), 676-684. https://doi.org/10.1002/nag.2324.
- Zheng, C., Liu, H., Ding, X. and Kouretzis, G. (2017a), "Resistance of inner soil to the vertical vibration of pipe piles", Soil Dyn. Earthq. Eng., 94, 83-87. https://doi.org/10.1016/j.soildyn.2017.01.002.
- Zheng, C., Gan, S., Ding, X. and Luan, L. (2017b), "Dynamic response of a pile embedded in elastic half space subjected to harmonic vertical loading", Acta Mech. Solida Sin., 30(6), 668-673. https://doi.org/10.1016/j.camss.2017.09.006.