DOI QR코드

DOI QR Code

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM)) ;
  • Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM))
  • Received : 2020.04.16
  • Accepted : 2020.10.14
  • Published : 2020.11.10

Abstract

In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (DF-481-130-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

References

  1. Abbas, I. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica. 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y.
  2. Abbas, I.A. (2015), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.
  3. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
  4. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2013.3193.
  5. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. https://doi.org/10.12989/scs.2016.22.2.369.
  6. Aouadi, M., Ciarletta, M. and Iovane, G. (2017), "A porous thermoelastic diffusion theory of types II and III", Acta Mechanica, 228(3), 931-949. https://doi.org/10.1007/s00707-016-1749-4.
  7. Bachher, M., Sarkar, N. and Lahiri, A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. https://doi.org/10.1016/j.ijmecsci.2014.08.029.
  8. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  9. Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Indian J. Pure Appl. Math., 28(12), 1573-1594.
  10. Debnath, L. and Bhatta, D. (2014), Integral Transforms and Their Applications, Chapman and Hall/CRC.
  11. Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. https://doi.org/10.1016/j.wavemoti.2013.06.009.
  12. El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.
  13. Ellahi, R., Sait, S.M., Shehzad, N. and Ayaz, Z. (2019), "A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation", Int. J. Numer. Meth. Heat Fluid Flow. https://doi.org/10.1108/HFF-06-2019-0506.
  14. Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Modeling of memory-dependent derivative in generalized thermoelasticity", Eur. Phys. J. Plus, 131(10), 372. https://doi.org/10.1140/epjp/i2016-16372-3.
  15. Ezzat, M.A. (1994), "State space approach to unsteady twodimensional free convection flow through a porous medium", Can. J. Phys., 72(5-6), 311-317. https://doi.org/10.1139/p94-045.
  16. Ezzat, M.A. and El Karamany, A.S. (2011), "Theory of fractional order in electro-thermoelasticity", Eur. J. Mech. A/Solids, 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004.
  17. Green, A. and Lindsay, K. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689.
  18. Green, A. and Naghdi, P. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Royal Soc. London Ser. A Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
  19. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.
  20. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. http://doi.org/10.12989/gae.2020.21.1.085.
  21. Hussein, E.M. (2015), "Fractional order thermoelastic problem for an infinitely long solid circular cylinder", J. Therm. Stresses, 38(2), 133-145. https://doi.org/10.1080/01495739.2014.936253.
  22. Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1), 1-36. http://doi.org/10.12989/gae.2014.7.1.001.
  23. Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. http://doi.org/10.12989/gae.2019.19.5.369.
  24. Lata, P. and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. http://doi.org/10.12989/gae.2019.19.1.029.
  25. Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., 22(2), 109-117. http://doi.org/10.12989/gae.2020.22.2.109.
  26. Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. http://doi.org/10.12989/gae.2019.19.4.295.
  27. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  28. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. http://doi.org/10.12989/sem.2017.61.3.381.
  29. Milani Shirvan, K., Mamourian, M. and Ellahi, R. (2017a), "Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port", Int. J. Numer. Meth. Heat Fluid Flow, 27(9), 2053-2069. https://doi.org/10.1108/HFF-08-2016-0317.
  30. Milani Shirvan, K., Mamourian, M., Mirzakhanlari, S., Rahimi, A. and Ellahi, R. (2017b), "Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver", Int. J. Numer. Meth. Heat Fluid Flow, 27(10), 2385-2399. https://doi.org/10.1108/HFF-10-2016-0419.
  31. Mondal, S., Sahu, S. and Pankaj, K. (2019), "Transference of Love-type waves in a bedded structure containing a functionally graded material and a porous piezoelectric medium", Appl. Math. Mech., 40(8), 1083-1096. https://doi.org/10.1007/s10483-019-2505-6
  32. Othman, M., Sarkar, N. and Atwa, S.Y. (2013), "Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature-dependent elastic medium", Comput. Math. Appl., 65(7), 1103-1118. https://doi.org/10.1016/j.camwa.2013.01.047.
  33. Othman, M.I. and Abd-Elaziz, E.M. (2019), "Influence of gravity and micro-temperatures on the thermoelastic porous medium under three theories", Int. J. Numer. Meth. Heat Fluid Flow. https://doi.org/10.1108/HFF-12-2018-0763.
  34. Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  35. Othman, M.I. and Sur, A. (2020), "Transient response in an elastothermo-diffusive medium in the context of memory-dependent heat transfer", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2020.1737758.
  36. Othman, M.I., Alharbi, A.M. and Al-Autabi, A.A.M.K. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. http://doi.org/10.12989/gae.2020.21.5.447.
  37. Sarkar, N. (2017), "Wave propagation in an initially stressed elastic half-space solids under time-fractional order twotemperature magneto-thermoelasticity", Eur. Phys. J. Plus, 132(4), 154. https://doi.org/10.1140/epjp/i2017-11426-8.
  38. Sarkar, N. and Lahiri, A. (2013), "The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity", Meccanica, 48(1), 231-245. https://doi.org/10.1007/s11012-012-9597-3.
  39. Sarkar, N. and Mondal, S. (2020), "Thermoelastic plane waves under the modified Green-Lindsay model with two-temperature formulation", ZAMM J. Appl. Math. Mech., e201900267. https://doi.org/10.1002/zamm.201900267.
  40. Sheikholeslami, M., Ellahi, R., Shafee, A. and Li, Z. (2019), "Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: An application of entropy generation and exergy loss", Int. J. Numer. Meth. Heat Fluid Flow, 29(3), 1079-1102. https://doi.org/10.1108/HFF-10-2018-0606.
  41. Sherief, H.H., El-Sayed, A.M.A. and Abd El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034.
  42. Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
  43. Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
  44. Sur, A. (2020a), "Wave propagation analysis of porous asphalts on account of memory responses", Mech. Based Des. Struct. Machines, 1-19. https://doi.org/10.1080/15397734.2020.1712553.
  45. Sur, A. (2020b), "Memory responses in a three-dimensional thermo-viscoelastic medium", Waves Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2020.1766726.
  46. Sur, A. (2020c), "A memory response on the elastothermodiffusive interaction subjected to rectangular thermal pulse and chemical shock", Mechanics Based Des. Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1772086.
  47. Sur, A. and Kanoria, M. (2014), "Fractional order generalized thermoelastic functionally graded solid with variable material properties", J. Solid Mech., 6(1), 54-69.
  48. Sur, A., Mondal, S. and Kanoria, M. (2020a), "Effect of nonlocality and memory responses in the thermoelastic problem with a Mode I crack", Waves Random Complex Media, 1-26. https://doi.org/10.1080/17455030.2020.1800860.
  49. Sur, A., Mondal, S. and Kanoria, M. (2020b), "Effect of hydrostatic pressure and memory effect on magnetothermoelastic materials with two-temperatures", Waves Random Complex Media, 1-30. https://doi.org/10.1080/17455030.2020.1805524.
  50. Wang, Y., Liu, D. and Wang, Q. (2015), "Effect of fractional order parameter on thermoelastic behaviors in infinite elastic medium with a cylindrical cavity", Acta Mechanica Solida Sinica, 28(3), 285-293. https://doi.org/10.1016/S0894-9166(15)30015-X.
  51. Youssef, H.M. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Transfer, 132(6), 1-7. https://doi.org/10.1115/1.4000705.
  52. Youssef, H.M. (2012), "Two-dimensional thermal shock problem of fractional order generalized thermoelasticity", Acta Mech., 223(6), 1219-1231. https://doi.org/10.1007/s00707-012-0627-y.
  53. Youssef, H.M. and Al-Lehaibi, E.A. (2010), "Variational principle of fractional order generalized thermoelasticity", Appl. Math. Lett., 23(10), 1183-1187. https://doi.org/10.1016/j.aml.2010.05.008.
  54. Zeeshan, A., Ellahi, R., Mabood, F. and Hussain, F. (2019), "Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane", Int. J. Numer. Meth. Heat Fluid Flow, https://doi.org/10.1108/HFF-11-2018-0677.

Cited by

  1. A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.001