과제정보
This study is supported by the National Key Research and Development Program of China (No. 2017YFC0405105) and National Natural Science Foundation of China (No. 51679164).
참고문헌
- Ai, J., Chen, J.F., Rotter, J.M. and Ooi, J.Y. (2011), "Assessment of rolling resistance models in discrete element simulations", Powder Technol., 206(3), 269-282. http://doi.org/10.1016/j.powtec.2010.09.030.
- Bardet, J.P. and Proubet, J. (1991), "A numerical investigation of the structure of persistent shear bands in granular media", Geotechnique, 41(4), 599-613. http://doi.org/10.1680/geot.1991.41.4.599.
- Belheine, N., Plassiard, J., Donze, F., Darve, F. and Seridi, A. (2009), "Numerical simulation of drained triaxial test using 3D discrete element modeling", Comput. Geotech., 36(1-2), 320-331. https://doi.org/10.1016/j.compgeo.2008.02.003.
- Binesh, S.M., Eslami-Feizabad, E. and Rahmani, R. (2018), "Discrete element modeling of drained triaxial test: Flexible and rigid lateral boundaries", Int. J. Civ. Eng., 16(10), 1463-1474. http://doi.org/10.1007/s40999-018-0293-0.
- Cheung, G. and O'Sullivan, C. (2008), "Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations", Particuology, 6(6), 483-500. http://doi.org/10.1016/j.partic.2008.07.018.
- Cil, M.B. and Alshibli, K.A. (2013), "3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary", Acta Geotech., 9(2), 287-298. http://doi.org/10.1007/s11440-013-0273-0.
- Cui, L., O'Sullivan, C. and O'Neill, S. (2007), "An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model", Geotechnique, 57(10), 831-844. http://doi.org/10.1680/geot.2007.57.10.831.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. http://doi.org/10.1680/geot.1980.30.3.331.
- Dai, B., Yang, J. Gu, X.Q. and Zhang, W. (2019), "A numerical analysis of the equivalent skeleton void ratio for silty sand", Geomech. Eng., 17(1), 19-30. http://doi.org/10.12989/gae.2019.17.1.019.
- de Bono, J., McDowell, G. and Wanatowski, D. (2012), "Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures", Geotech. Lett., 2(4), 199-203. http://doi.org/10.1680/geolett.12.00040.
- Evans, T.M. and Frost, J.D. (2010), "Multiscale investigation of shear bands in sand: Physical and numerical experiments", Int. J. Numer. Anal. Meth. Geomech., 34(15), 1634-1650. http://doi.org/10.1002/nag.877.
- Evans, T.M. and Valdes, J.R. (2011), "The microstructure of particulate mixtures in one-dimensional compression: Numerical studies", Granul. Matter, 13(5), 657-669. http://doi.org/10.1007/s10035-011-0278-z.
- Feng, Y.T. and Owen, D.R.J. (2014), "Discrete element modelling of large scale particle systems-I: Exact scaling laws", Comp. Part. Mech., 1(2), 159-168. http://doi.org/10.1007/s40571-014-0010-y.
- Feng, Y.T., Han, K., Owen, D.R.J. and Loughran, J. (2009), "On upscaling of discrete element models: Similarity principles", Eng. Comput., 26(6), 599-609. http://doi.org/10.1108/02644400910975405.
- Huang, X., Hanley, K.J., Zhang, Z. and Kwok, C.Y. (2019), "Structural degradation of sands during cyclic liquefaction: Insight from DEM simulations", Comput. Geotech., 114, 103139. http://doi.org/10.1016/j.compgeo.2019.103139
- Itasca Consulting Group Inc. (2004), Particle Flow Code in 3D Dimensions (PFC3D) User's Manual, Version 3.1, Itasca, Minneapolis, Minnesota, U.S.A.
- Iwashita, K. and Oda, M. (1998), "Rolling resistance at contacts in simulation of shear band development by DEM", J. Eng. Mech., 124(3), 285-292. http://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285).
- Jacobson, D.E., Valdes, J.R. and Evans, T.M. (2007), "A numerical view into direct shear specimen size effects", Geotech. Test. J., 30(6), 512-516. http://doi.org/10.1520/GTJ100923.
- Jiang, M.J., Yan, H.B., Zhu, H.H. and Utili, S. (2011), "Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses", Comput. Geotech., 38(1), 14-29. http://doi.org/10.1016/j.compgeo.2010.09.001.
- Khoubani, A. and Evans, T.M. (2018), "An efficient flexible membrane boundary condition for DEM simulation of axisymmetric element tests", Int. J. Numer. Anal. Meth. Geomech., 42(4), 694-715. http://doi.org/10.1002/nag.2762.
- Kuhn, M.R. (1995), "A flexible boundary for three-dimensional DEM particle assemblies", Eng. Comput., 12(2), 175-183. http://doi.org/10.1108/02644409510799541.
- Kumara, J.J. and Hayano, K. (2016), "Importance of particle shape on stress-strain behaviour of crushed stone-sand mixtures", Geomech. Eng., 10(4), 455-470. http://doi.org/10.12989/gae.2016.10.4.455.
- Lee, S.J., Hashash, Y.M.A. and Nezami, E.G. (2012), "Simulation of triaxial compression tests with polyhedral discrete elements", Comput. Geotech., 43, 92-100. http://doi.org/10.1016/j.compgeo.2012.02.011.
- Lu, Y., Li, X. and Wang, Y. (2018), "Application of a flexible membrane to DEM modelling of axisymmetric triaxial compression tests on sands", Eur. J. Environ. Civ. Eng., 22(s1), s19-s36. http://doi.org/10.1080/19648189.2018.1425157.
- Ma, G., Chang, X.L., Zhou, W. and Ng, T.T. (2014), "Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study", Geomech. Eng., 7(3), 317-333. http://doi.org/10.12989/gae.2014.7.3.317.
- Meng, J., Huang, J., Sheng, D. and Sloan, S.W. (2017), "Quasi-static rheology of granular media using the static DEM", Int. J. Geomech., 17(11), 04017094. http://doi.org/10.1061/(asce)gm.1943-5622.0001001.
- O'Sullivan, C. and Cui, L. (2009), "Micromechanics of granular material response during load reversals: Combined DEM and experimental study", Powder Technol., 193(3), 289-302. http://doi.org/10.1016/j.powtec.2009.03.003
- Qu, T., Feng, Y.T., Wang, Y. and Wang, M. (2019), "Discrete element modelling of flexible membrane boundaries for triaxial tests", Comput. Geotech., 115, 103154. http://doi.org/10.1016/j.compgeo.2019.103154.
- Rakhimzhanova, A.K., Thornton, C., Minh, N.H., Fok, S.C. and Zhao, Y. (2019), "Numerical simulations of triaxial compression tests of cemented sandstone", Comput. Geotech., 113, 103068. http://doi.org/10.1016/j.compgeo.2019.04.013.
- Shi, D., Yang, C., Xue, J. and Wang, W. (2018), "Discrete element modeling of hollow cylinder shear behavior of granular material with fixed principal stress diection", J. Hydraul. Eng., 49(8), 917-925. (In Chinese). http://doi.org/10.13243/j.cnki.slxb.20180233.
- Wang, Y. and Tonon, F. (2009), "Modeling triaxial test on intact rock using discrete element method with membrane boundary", J. Eng. Mech., 135(9), 1029-1037. http://doi.org/10.1061/(ASCE)EM.1943-7889.0000017.
- Wang, Y.H. and Leung, S.C. (2008), "A particulate-scale investigation of cemented sand behavior", Can. Geotech. J., 45(1), 29-44. http://doi.org/10.1139/t07-070.
- Zhao, X. and Evans, T.M. (2009), "Discrete simulations of laboratory loading conditions", Int. J. Geomech., 9(4), 169-178. http://doi.org/10.1007/s10035-011-0284-1.
- Zhao, X. and Evans, T.M. (2011), "Numerical analysis of critical state behaviors of granular soils under different loading conditions", Granul. Matter, 13(6), 751-764. http://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169).
- Zhou, L.L., Chu, X.H., Zhang, X. and Xu, Y.J. (2016), "Numerical investigations on breakage behaviour of granular materials under triaxial stresses", Geomech. Eng., 11(5), 639-655. http://doi.org/10.12989/gae.2016.11.5.639.