DOI QR코드

DOI QR Code

miR-155, miR-191, and miR-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of Avastin on these biomarkers

  • Emami, Naghmeh (Department of Biology, Faculty of Basic Sciences, Islamic Azad University) ;
  • Mohamadnia, Abdolreza (Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences) ;
  • Mirzaei, Masoumeh (Department of Biology, Faculty of Basic Sciences, Islamic Azad University) ;
  • Bayat, Mohammad (Craniomaxillofacial Research Center, Tehran University of Medical Sciences) ;
  • Mohammadi, Farnoush (Craniomaxillofacial Research Center, Tehran University of Medical Sciences) ;
  • Bahrami, Naghmeh (Craniomaxillofacial Research Center, Tehran University of Medical Sciences)
  • Received : 2020.03.06
  • Accepted : 2020.05.05
  • Published : 2020.10.31

Abstract

Objectives: Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck cancer. MicroRNAs, as new biomarkers, are recommended for diagnosis and treatment of different types of cancers. Bevacizumab, sold under the trade name Avastin, is a humanized whole monoclonal antibody that targets and blocks VEGF-A (vascular endothelial growth factor A; angiogenesis) and oncogenic signaling pathways. Materials and Methods: This study comprised 50 cases suffering from OSCC and 50 healthy participants. Peripheral blood samples were collected in glass test tubes, and RNA extraction was started immediately. Expression levels of miR-155, miR-191, and miR-494 biomarkers in the peripheral blood of OSCC-affected individuals and healthy volunteers in vivo were evaluated using real-time PCR. The influence of Avastin on the expression levels of the aforementioned biomarkers in vitro and in the HN5 cell line was also investigated. Results: Expression levels of miR-155, miR-191, and miR-494 in the peripheral blood of individuals affected by OSCC were higher than in those who were healthy. Moreover, Avastin at a concentration of 400 μM caused a decrease in the expression levels of the three biomarkers and a 1.5-fold, 3.5-fold, and 4-fold increase in apoptosis in the test samples compared to the controls in the HN5 cell line after 24, 48, and 72 hours, respectively. Conclusion: The findings of this study demonstrate that overexpression of miR-155, miR-191, and miR-494 is associated with OSCC, and Avastin is able to regulate and downregulate the expression of those biomarkers and increase apoptosis in cancerous cells in the HN5 cell line.

Keywords

References

  1. Kumar M, Nanavati R, Modi TG, Dobariya C. Oral cancer: etiology and risk factors: a review. J Cancer Res Ther 2016;12:458-63. https://doi.org/10.4103/0973-1482.186696
  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86. https://doi.org/10.1002/ijc.29210
  3. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016;1:15004. https://doi.org/10.1038/sigtrans.2015.4
  4. Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology. Front Genet 2014;5:99. https://doi.org/10.3389/fgene.2014.00099
  5. Stahlhut Espinosa CE, Slack FJ. The role of microRNAs in cancer. Yale J Biol Med 2006;79:131-40.
  6. Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, et al. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One 2012;7:e47003. https://doi.org/10.1371/journal.pone.0047003
  7. Zhang X, Wu M, Chong QY, Zhang W, Qian P, Yan H, et al. Amplification of hsa-miR-191/425 locus promotes breast cancer proliferation and metastasis by targeting DICER1. Carcinogenesis 2018;39:1506-16. https://doi.org/10.1093/carcin/bgy102
  8. Chen J, Nie S, Hong B, Li C, Xiong T, Shen X, et al. MicroRNA-494 promotes tumor growth by targeting PTEN in non-small cell lung cancer. Int J Clin Exp Pathol 2017;10:4441-50.
  9. Qu Y, Zhang H, Sun W, Han Y, Li S, Qu Y, et al. MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-${\beta}$ receptor 2. Cancer Sci 2018;109:618-28. https://doi.org/10.1111/cas.13472
  10. Peng WZ, Ma R, Wang F, Yu J, Liu ZB. Role of miR-191/425 cluster in tumorigenesis and diagnosis of gastric cancer. Int J Mol Sci 2014;15:4031-48. https://doi.org/10.3390/ijms15034031
  11. He W, Li Y, Chen X, Lu L, Tang B, Wang Z, et al. miR-494 acts as an anti-oncogene in gastric carcinoma by targeting c-myc. J Gastroenterol Hepatol 2014;29:1427-34. https://doi.org/10.1111/jgh.12558
  12. Shi LJ, Zhang CY, Zhou ZT, Ma JY, Liu Y, Bao ZX, et al. MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential. Head Neck 2015;37:970-6. https://doi.org/10.1002/hed.23700
  13. Gissi DB, Morandi L, Gabusi A, Tarsitano A, Marchetti C, Cura F, et al. A noninvasive test for MicroRNA expression in oral squamous cell carcinoma. Int J Mol Sci 2018;19:1789. https://doi.org/10.3390/ijms19061789
  14. Liborio-Kimura TN, Jung HM, Chan EK. miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer. Oral Oncol 2015;51:151-7. https://doi.org/10.1016/j.oraloncology.2014.11.019
  15. Zahra A, Rubab I, Malik S, Khan A, Khan MJ, Fatmi MQ. Metaanalysis of miRNAs and their involvement as biomarkers in oral cancers. Biomed Res Int 2018;2018:8439820. https://doi.org/10.1155/2018/8439820
  16. Troiano G, Mastrangelo F, Caponio VCA, Laino L, Cirillo N, Lo Muzio L. Predictive prognostic value of tissue-based microRNA expression in oral squamous cell carcinoma: a systematic review and meta-analysis. J Dent Res 2018;97:759-66. https://doi.org/10.1177/0022034518762090
  17. Patel RS, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, et al. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 2011;56:1506-13. https://doi.org/10.1016/j.archoralbio.2011.05.015
  18. Shi X, Su S, Long J, Mei B, Chen Y. MicroRNA-191 targets Ndeacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. Acta Biochim Biophys Sin (Shanghai) 2011;43:849-56. https://doi.org/10.1093/abbs/gmr084
  19. Bedewy AML, Elmaghraby SM, Shehata AA, Kandil NS. Prognostic value of miRNA-155 expression in B-cell non-hodgkin lymphoma. Turk J Haematol 2017;34:207-12. https://doi.org/10.4274/tjh.2016.0286
  20. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis 2012;33:1126-33. https://doi.org/10.1093/carcin/bgs140
  21. Pollutri D, Patrizi C, Marinelli S, Giovannini C, Trombetta E, Giannone FA, et al. The epigenetically regulated miR-494 associates with stem-cell phenotype and induces sorafenib resistance in hepatocellular carcinoma. Cell Death Dis 2018;9:4. https://doi.org/10.1038/s41419-017-0076-6
  22. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 2006;28:1779-802. https://doi.org/10.1016/j.clinthera.2006.11.015
  23. Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, et al. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci 2015;106:1362-9. https://doi.org/10.1111/cas.12747
  24. de Gramont A, Van Cutsem E. Investigating the potential of bevacizumab in other indications: metastatic renal cell, non-small cell lung, pancreatic and breast cancer. Oncology 2005;69 Suppl 3:46-56. https://doi.org/10.1159/000088483
  25. Yoshida H, Yoshimura H, Matsuda S, Ryoke T, Kiyoshima T, Kobayashi M, et al. Effects of peritumoral bevacizumab injection against oral squamous cell carcinoma in a nude mouse xenograft model: a preliminary study. Oncol Lett 2018;15:8627-34. https://doi.org/10.3892/ol.2018.8399
  26. Zhao XM, Liu KQ, Zhu G, He F, Duval B, Richer JM, et al. Identifying cancer-related microRNAs based on gene expression data. Bioinformatics 2015;31:1226-34. https://doi.org/10.1093/bioinformatics/btu811
  27. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer - an emerging concept. EBioMedicine 2016;12:34-42. https://doi.org/10.1016/j.ebiom.2016.09.017
  28. Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev 2006;16:4-9. https://doi.org/10.1016/j.gde.2005.12.005
  29. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60. https://doi.org/10.1126/science.1073827
  30. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010;50:298-301. https://doi.org/10.1016/j.ymeth.2010.01.032
  31. Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang X, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016;7:84508-19. https://doi.org/10.18632/oncotarget.13022
  32. Lu S, Liao QS, Tang L. MiR-155 affects osteosarcoma cell proliferation and invasion through regulating $NF-{\kappa}B$ signaling pathway. Eur Rev Med Pharmacol Sci 2018;22:7633-9. https://doi.org/10.26355/eurrev_201811_16380
  33. Zare A, Alipoor B, Omrani MD, Zali MR, Malekpour Alamdari N, Ghaedi H. Decreased miR-155-5p, miR-15a, and miR-186 expression in gastric cancer is associated with advanced tumor grade and metastasis. Iran Biomed J 2019;23:338-43. https://doi.org/10.29252/.23.5.338
  34. Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, et al. hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res 2010;70:8077-87. https://doi.org/10.1158/0008-5472.CAN-10-1313
  35. Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, et al. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol 2014;35:12157-63. https://doi.org/10.1007/s13277-014-2521-9
  36. Zhang XF, Li KK, Gao L, Li SZ, Chen K, Zhang JB, et al. miR-191 promotes tumorigenesis of human colorectal cancer through targeting $C/EBP{\beta}$. Oncotarget 2015;6:4144-58. https://doi.org/10.18632/oncotarget.2864
  37. Colamaio M, Borbone E, Russo L, Bianco M, Federico A, Califano D, et al. miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab 2011;96:E1915-24. https://doi.org/10.1210/jc.2011-0408
  38. Chen P, Pan X, Zhao L, Jin L, Lin C, Quan J, et al. MicroRNA-191-5p exerts a tumor suppressive role in renal cell carcinoma. Exp Ther Med 2018;15:1686-93. https://doi.org/10.3892/etm.2017.5581
  39. Macedo T, Silva-Oliveira RJ, Silva VAO, Vidal DO, Evangelista AF, Marques MMC. Overexpression of mir-183 and mir-494 promotes proliferation and migration in human breast cancer cell lines. Oncol Lett 2017;14:1054-60. https://doi.org/10.3892/ol.2017.6265
  40. Liu K, Liu S, Zhang W, Jia B, Tan L, Jin Z, et al. miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncol Rep 2015;34:1003-10. https://doi.org/10.3892/or.2015.4030
  41. Zhang Y, Guo L, Li Y, Feng GH, Teng F, Li W, et al. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 2018;17:1. https://doi.org/10.1186/s12943-017-0753-1
  42. Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE. MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep 2015;33:2393-401. https://doi.org/10.3892/or.2015.3821
  43. Yuan J, Wang K, Xi M. MiR-494 inhibits epithelial ovarian cancer growth by targeting c-Myc. Med Sci Monit 2016;22:617-24. https://doi.org/10.12659/msm.897288
  44. Zhao Z, Xia G, Li N, Su R, Chen X, Zhong L. Autophagy inhibition promotes bevacizumab-induced apoptosis and proliferation inhibition in colorectal cancer cells. J Cancer 2018;9:3407-16. https://doi.org/10.7150/jca.24201
  45. Kang YK, Kang WK, Shin DB, Chen J, Xiong J, Wang J, et al. Capecitabine/cisplatin versus 5-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: a randomised phase III noninferiority trial. Ann Oncol 2009;20:666-73. https://doi.org/10.1093/annonc/mdn717

Cited by

  1. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells vol.22, pp.5, 2020, https://doi.org/10.3390/ijms22052553
  2. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review vol.22, pp.5, 2020, https://doi.org/10.3390/ijms22052561
  3. The Role of microRNA in Pancreatic Cancer vol.9, pp.10, 2020, https://doi.org/10.3390/biomedicines9101322