DOI QR코드

DOI QR Code

Statistical investigation on size distribution of suspended cohesive sediment

점착성 부유사의 입도분포형 검증

  • Park, Byeoungeun (Department of Civil Engineering, Chungnam National University) ;
  • Byun, Jisun (Research Institute for Smart Infrastructure and Construction, Chungnam National University) ;
  • Son, Minwoo (Department of Civil Engineering, Chungnam National University)
  • 박병은 (충남대학교 공과대학 토목공학과) ;
  • 변지선 (충남대학교 스마트인프라건설연구소) ;
  • 손민우 (충남대학교 공과대학 토목공학과)
  • Received : 2020.07.14
  • Accepted : 2020.08.25
  • Published : 2020.10.31

Abstract

The purpose of this study is to find the appropriate probability distribution representing the size distribution of suspended cohesive sediment. Based on goodness-of-fit test for a significance level of 5% using the Kolmogorov-Smirnov test, it is found that the floc size distributions measured in laboratory experiment and field study show different results. In the case of sample data collected from field experiments, the Gamma distribution is the best fitting form. In the case of laboratory experiment results, the sample data shows the positively-skewed distribution and the GEV distribution is the best fitted. The lognormal distribution, which is generally assumed to be a floc size distribution, is not suitable for both field and laboratory results. By using 3-parameter lognormal distribution, it is shown that similar size distribution with floc size distribution can be simulated.

본 연구는 점착성 부유사의 입도분포에 적합한 이론적 확률분포형을 찾는 것을 목적으로 수행되었다. 유의수준 5%에 대해 적합도 검정을 수행한 결과, 실험실 실험자료와 현장실험 자료에서 측정된 플럭입도분포는 다른 결과를 나타냈다. 현장실험으로부터 얻어진 표본자료의 경우 왼쪽으로 치우친 지수분포의 형태를 나타내며, Gamma 분포가 가장 우수하였다. 실험실실험 자료의 경우 표본자료가 양의 왜도를 가지며 GEV 분포가 가장 적합하였다. 많은 연구에서 점착성 유사의 입도분포로 가정되는 2매개변수 Lognormal 분포의 경우 현장실험 자료와 실험실실험 자료 모두 적합하지 않았으며, 위치매개변수를 추가하여 3매개변수 Lognormal 분포 적용 시 점착성 유사의 입도분포를 모사할 수 있는 것으로 나타났다.

Keywords

References

  1. Agrawal, Y.C., and Traykovski, P. (2001). "Particles in the bottom boundary layer: Concentration and size dynamics through events." Journal of Geophysical Research: Oceans, Vol. 106, No. C5, pp. 9533-9542. https://doi.org/10.1029/2000JC900160
  2. Barbusinski, K., and Koscielniak, H. (1995). "Influence of substrate loading intensity on floc size in activated sludge process." Water Research, Vol. 29, No. 7, pp. 1703-1710. https://doi.org/10.1016/0043-1354(94)00326-3
  3. Biggs, C.A., and Lant, P.A. (2000). "Activated sludge flocculation: On-line determination of floc size and the effect of shear." Water Research, Vol. 34, No. 9, pp. 2542-2550. https://doi.org/10.1016/S0043-1354(99)00431-5
  4. Blott, S.J., and Pye, K. (2006). "Particle size distribution analysis of sand‐sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape." Sedimentology, Vol. 53, No. 3, pp. 671-685. https://doi.org/10.1111/j.1365-3091.2006.00786.x
  5. Bouyer, D., Line, A., Cockx, A., and Do-Quang, Z. (2001). "Experimental analysis of floc size distribution and hydrodynamics in a jar-test." Chemical Engineering Research and Design, Vol. 79, No. 8, pp. 1017-1024. https://doi.org/10.1205/02638760152721587
  6. Bouyer, D., Line, A., and Do‐Quang, Z. (2004). "Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank." American Institute of Chemical Engineers Journal, Vol. 50, No. 9, pp. 2064-2081. https://doi.org/10.1002/aic.10242
  7. Dyer, K.R., Cornelisse, J., Dearnaley, M.P., Fennessy, M.J., Jones, S. E., Kappenberg, J., McCave, I.N., Pejrup, M., van Leussen, W., and Wolfstein, K. (1996). "A comparison of in situ techniques for estuarine floc settling velocity measurements." Journal of Sea Research, Vol. 36, No. 1-2, pp. 15-29. https://doi.org/10.1016/S1385-1101(96)90766-2
  8. Eisma, D., Schuhmacher, T., Boekel, H., Van Heerwaarden, J., Franken, H., Laan, M., Vaars, A., Eijgenraam, F., and Kalf, J. (1990). "A camera and image-analysis system for in situ observation of flocs in natural waters." Netherlands Journal of Sea Research, Vol. 27, No. 1, pp. 43-56. https://doi.org/10.1016/0077-7579(90)90033-D
  9. Fettweis, M., Baeye, M., Lee, B.J., Chen, P., and Jason, C.S. (2012). "Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea)." Geo-Marine Letters, Vol. 32, No. 2, pp. 123-137. https://doi.org/10.1007/s00367-011-0266-7
  10. Gibbs, R.J. (1982). "Floc stability during coulter-counter size analysis: Research-method paper." Journal of Sedimentary Research, Vol. 52, No. 2, pp. 657-660. https://doi.org/10.1306/212F7FE5-2B24-11D7-8648000102C1865D
  11. Guo, C., He, Q., van Prooijen, B.C., Guo, L., Manning, A.J., and Bass, S. (2018). "Investigation of flocculation dynamics under changing hydrodynamic forcing on an intertidal mudflat." Marine Geology, Vol. 395, pp. 120-132. https://doi.org/10.1016/j.margeo.2017.10.001
  12. Jin, B., and Lant, P. (2004). "Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors." Chemical Engineering Science, Vol. 59, No. 12, pp. 2379-2388. https://doi.org/10.1016/j.ces.2004.01.061
  13. Lee, B.J., Fettweis, M., Toorman, E., and Molz, F.J. (2012). "Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone." Journal of Geophysical Research: Oceans, Vol. 117, No. C3, p. C03014.
  14. Li, D.H., and Ganczarczyk, J.J. (1990). "Structure of activated sludge flocs." Biotechnology and bioengineering, Vol. 35, No. 1, pp. 57-65. https://doi.org/10.1002/bit.260350109
  15. Lick, W., Lick, J., and Ziegler, C.K. (1992). Flocculation and its effect on the vertical transport of fine-grained sediments, Sediment/Water Interactions. Springer, Dordrecht, pp. 1-16.
  16. Maggi, F., Mietta, F., and Winterwerp, J.C. (2007). "Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment." Journal of Hydrology, Vol. 343, No. 1-2, pp. 43-55. https://doi.org/10.1016/j.jhydrol.2007.05.035
  17. Marchiso, D.L., Vigil, R.D., and Fox, R.O. (2003). "Quadrature method of moments for aggregation-breakage processes." Journal of colloid and interface science, Vol. 258, No. 2, pp. 322-334. https://doi.org/10.1016/S0021-9797(02)00054-1
  18. Massey Jr, F.J. (1951). "The Kolmogorov-Smirnov test for goodness of fit." Journal of American Statistical Association, Vol. 46, No. 253, pp. 68-78. https://doi.org/10.1080/01621459.1951.10500769
  19. Mazumder, B.S., Ray, R.N., and Dalal, D.C. (2005). "Size distributions of suspended particles in open channel flow over bed materials." Environmetrics: The official journal of the International Environmetrics Society, Vol. 16, No. 2, pp. 149-165. https://doi.org/10.1002/env.690
  20. McAnally, W.H., and Mehta, A.J. (2000). "Aggregation rate of fine sediment." Journal of Hydraulic Engineering, Vol. 126, No. 12, pp. 883-892. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:12(883)
  21. Mikkelsen, O.A., Hill, P.S., and Milligan, T.G. (2006). "Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera." Journal of Sea Research, Vol. 55, No. 2, pp. 87-102. https://doi.org/10.1016/j.seares.2005.09.003
  22. Owen, M. W. (1976). Determination of the settling velocities of cohesive muds. Technical Report, No. IT 161, HR Wallingford, U.K., pp. 1-42.
  23. Schwarz, C., Cox, T., van Engeland, T., van Oevelen, D., van Belzen, J., van de Koppel, J., Soetaert, K., Bouma, T.J., Meire, P., and Temmerman, S. (2017). "Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM." Estuarine, Coastal and Shelf Science, Vol. 197, pp. 221-235. https://doi.org/10.1016/j.ecss.2017.08.041
  24. Shen, X., and Maa, J.P.Y. (2015). "Modeling floc size distribution of suspended cohesive sediments using quadrature method of moments." Marine Geology, Vol. 359, pp. 106-119. https://doi.org/10.1016/j.margeo.2014.11.014
  25. Shin, H.J., Son, M., and Lee, G.H. (2015). "Stochastic flocculation model for cohesive sediment suspended in water." Water, Vol. 7, No. 5, pp. 2527-2541. https://doi.org/10.3390/w7052527
  26. Verney, R., Lafite, R., Brun-Cottan, J.C., and Le Hir, P. (2011). "Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling." Continental Shelf Research, Vol. 31, No. 10, pp. S64-S83. https://doi.org/10.1016/j.csr.2010.02.005
  27. Wu, J., Liu, J.T., and Wang, X. (2012). "Sediment trapping of turbidity maxima in the Changjiang Estuary." Marine Geology, Vol. 303, pp. 14-25. https://doi.org/10.1016/j.margeo.2012.02.011
  28. Yang, Y., Wang, Y. P., Li, C., Gao, S., Shi, B., Zhou, L., Wang, D., Li, G., and Dai, C. (2016). "On the variability of near-bed floc size due to complex interactions between turbulence, SSC, settling velocity, effective density and the fractal dimension of flocs." Geo-Marine Letters, Vol. 36, No. 2, pp. 135-149. https://doi.org/10.1007/s00367-016-0434-x
  29. Zhang, B., Yamamoto, K., Ohgaki, S., and Kamiko, N. (1997). "Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation." Water Science and Technology, Vol. 35, No. 6, pp. 37-44. https://doi.org/10.1016/S0273-1223(97)00093-0