DOI QR코드

DOI QR Code

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release

GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구

  • Yoon, Hee-Soo (Department of Chemical & Bio Engineering, Gachon University) ;
  • Kang, Ik-Joong (Department of Chemical & Bio Engineering, Gachon University)
  • 윤희수 (가천대학교 화공생명공학과) ;
  • 강익중 (가천대학교 화공생명공학과)
  • Received : 2020.08.24
  • Accepted : 2020.09.21
  • Published : 2020.11.01

Abstract

The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.

약물 전달 시스템(Drug Delivery System, DDS)은 인체에 발생한 질환을 치료를 할 때 약물을 효과적으로 투약하므로써 약물성분에 의한 부작용을 최소화하고, 약물의 효능을 최대한으로 크게하기 위해 기존의 알려진 성분의 약물이나 새로운 성분의 제형을 설계하여 환자의 약물치료 과정을 최적화하는 목적을 지향하는 기술로 정의된다. 본 연구에서는 Tripolyphosphate (TPP)의 농도가 키토산과의 가교결합을 통하여 제조되는 Chitosan nanoparticles (CNPs)의 크기에 미치는 영향을 측정하여 TPP의 농도가 낮을수록 작은 크기의 입자가 형성되는 것을 확인하였다. 그리고 산화철(Fe3O4)의 양에 따른 CNPs-Fe3O4의 특성을 측정하여 Fe3O4의 양이 많을수록 자성 약물 전달체로써의 특성이 잘 나타남을 확인하였다. 닌히드린 반응(Ninhydrin test)를 통하여 저농도 구간(0.004~0.02 wt%)에서는 Y = 0.00373 exp(179.729X) - 0.0114 (R2 = 0.989), 고농도구간(0.02~0.1wt%)에서는 Y = 21.680X - 0.290 (R2 = 0.999)의 γ-aminobutyric acid (GABA)의 농도에 따른 검량선을 얻었다. 이 검량선을 사용하여 흡수를 위하여 넣어주는 GABA의 양에 따른 최대 흡수율의 관계식 Y = -136.527 exp [(-90.0862)X] + 64.724 (R2 = 0.997) 을 얻었으며, 초기에 넣어주는 GABA의 양이 약 0.04 g인 지점부터는 약 62.5%로 흡수율이 일정해 지고, 시간에 따른 GABA-Fe3O4-CNPs로부터 방출되는 GABA의 양을 측정하여 약 24 hr 이후부터 약물 방출이 종료되는 것을 확인하였다. 또한 최적의 조건에서 만들어진 GABA-Fe3O4-CNPs는 약 150 nm의 구형 입자이며, 그에 따른 입자의 특성이 잘 나타나는 것을 확인하여 약물 전달체로써 적합함을 알 수 있었다.

Keywords

References

  1. Han, T. H. and Lee, H. H., "Gojani, A. B. and Yoh, J. I., "New Drug Delivery System Based on a Laser-Induced Shockwave," Transactions of the Korean Society of Mechanical Engineers B, 34, 67-71(2010).
  2. Singh, R. and Lillard, J. W., "Nanoparticle-based Targeted Drug Delivery," Exp Mol Pathol., 86, 215-223(2009). https://doi.org/10.1016/j.yexmp.2008.12.004
  3. Chu, W. S., Kim, S. G., and Ahn, S. H., "Micro/Nano Fabrication Technique in Drug Delivery System (DDS)," Journal of the Korean Society for Precision Engineering, 23, 125-131(2006).
  4. Allen, T. M. and Cullis, P. R., "Drug Delivery Systems: Entering the Mainstream," Science, 303, 1818-1822(2004). https://doi.org/10.1126/science.1095833
  5. Brocchini, S. and James, K., "Structure-property Correlations in a Combinatorial Library of Degradable Biomaterials," Journal of Biomedical Materials Research., 42, 66-75(1998). https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-M
  6. Ahmed, A., Bonner, C. and Desai, T. A., "Bioadhesive Microdevices with Multiple Reservoirs: a New Platform for Oral Drug Delivery," Journal of Controlled Release., 81, 291-306(2002). https://doi.org/10.1016/S0168-3659(02)00074-3
  7. Santini, J. J. T., Richards, A. C., and Scheidt, R., "Microchips as Controlled Drug-Delivery Devices," Angewandte Chemie International Edition, 39, 2396-2407(2000). https://doi.org/10.1002/1521-3773(20000717)39:14<2396::AID-ANIE2396>3.0.CO;2-U
  8. Desai, T., Hwa Chu, W., Hayek, A. and Ferrari, M., "Microfabricated Immunoisolating Biocapsules," Biotechnology and Bioengineering., 57, 118-120(1998). https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<118::AID-BIT14>3.0.CO;2-G
  9. Reed, M. L., Wu, C., Kneller, J. and Watkins, S., "Micromechanical Devices for Intravascular Drug Delivery," J. Pharm. Sci., 87, 1387-1394(1998). https://doi.org/10.1021/js980085q
  10. James, L. W., Amit, K., Hans, A. B., Enoch, K. and George, M. W., "Microcontact Printing of Self-assembled Monolayers: Applications in Microfabrication," Nanotechnology, 7, 452(1996). https://doi.org/10.1088/0957-4484/7/4/028
  11. Lim, J. W. and Kang, I. J., "Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering," Bulletin of the Korean Chemical Society, 34, 237-242(2013). https://doi.org/10.5012/bkcs.2013.34.1.237
  12. Dash, M., Chiellini, F., Ottenbrite, R. M. and Chiellini, E., "Chitosan-A Versatile Semi-synthetic Polymer in Biomedical Applications," Progress in Polymer Science, 36, 981-1014(2011). https://doi.org/10.1016/j.progpolymsci.2011.02.001
  13. Chen, L. and Subirade, M., "Chitosan/beta-lactoglobulin Coreshell Nanoparticles as Nutraceutical Carriers," Biomaterials, 26, 6041-6053(2005). https://doi.org/10.1016/j.biomaterials.2005.03.011
  14. Finch, C. A., "Advances in Chitin and Chitosan," Polymer International., 31, 401-404(1993).
  15. Kim, B. G. and Kang, I. J., "Evaluation of the Effects of Biodegradable Nanoparticles on a Vaccine Delivery System Using AFM, SEM, and TEM," Ultramicroscopy., 108, 1168-1173(2008). https://doi.org/10.1016/j.ultramic.2008.04.038
  16. Pusateri, A. E., Mccarthy, S. J., Gregory, K. W., Harris, R. A., Cardenas, L., Mcmanus, A. T. and Goodwin, C. W., "Effect of a Chitosan-based Hemostatic Dressing on Blood Loss and Survival in a Model of Severe Venous Hemorrhage and Hepatic Injury in Swine," J. Trauma, 54, 177-182(2003). https://doi.org/10.1097/00005373-200301000-00023
  17. Ilium, L., "Chitosan and Its Use as a Pharmaceutical Excipient," Pharmaceutical Research, 15, 1326-1331(1998). https://doi.org/10.1023/A:1011929016601
  18. Dodane, V. and Vilivalam, V. D., "Pharmaceutical Applications of Chitosan," Pharmaceutical Science & Technology Today, 1, 246-253(1998). https://doi.org/10.1016/S1461-5347(98)00059-5
  19. Das, B., Mandal, M., Upadhyay, A., Chattopadhyay, P. and Karak, N., "Bio-based Hyperbranched Polyurethane/$Fe_3O_4$ Nanocomposites: Smart Antibacterial Biomaterials for Biomedical Devices and Implants," Biomed Mater., 8, 35-53(2013).
  20. Gong, T., Li, W., Chen, H., Wang, L., Shao, S. and Zhou, S. "Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers," Acta Biomater., 8, 1248-1259(2012). https://doi.org/10.1016/j.actbio.2011.12.006
  21. Weinstein, J. S., Varallyay, C. G., Dosa, E., Gahramanov, S., Hamilton, B., Rooney, W. D., Muldoon, L. L. and Neuwelt, E. A. "Superparamagnetic Iron Oxide Nanoparticles: Diagnostic Magnetic Resonance Imaging and Potential Therapeutic Applications in Neurooncology and Central Nervous System Inflammatory Pathologies, a Review," J. Cereb. Blood. Flow. Metab., 30, 15-35(2010). https://doi.org/10.1038/jcbfm.2009.192
  22. Unsoy, G., Yalcin, S., Khodadust, R., Gunduz, G. and Gunduz, U., "Synthesis Optimization and Characterization of Chitosancoated Iron Oxide Nanoparticles Produced for Biomedical Applications," Journal of Nanoparticle Research., 14, 156-164(2012).
  23. Gironell, A., Figueiras, F. P., Pagonabarraga, J., Herance, J. R., Pascual-Sedano, B., Trampal, C. and Gispert, J. D., "Gaba and Serotonin Molecular Neuroimaging in Essential Tremor: a Clinical Correlation Study," Parkinsonism Relat Disord., 18, 876-880(2012). https://doi.org/10.1016/j.parkreldis.2012.04.024
  24. Buzzi, A., Chikhladze, M., Falcicchia, C., Paradiso, B., Lanza, G., Soukupova, M., Marti, M., Morari, M., Franceschetti, S. and Simonato, M., "Loss of Cortical GABA Terminals in Unverricht-Lundborg Disease," Neurobiol Dis., 47, 216-224(2012). https://doi.org/10.1016/j.nbd.2012.04.005
  25. Cho, S. C., Kim, D. H., Park, C. S., Koh, J. H., Pyun, Y. R. and Kook, M. C., "Production of GABA-rich Tomato Paste by Lactobacillus Sp. Fermentation," The Korean Journal of Food And Nutrition., 25, 26-31(2012). https://doi.org/10.9799/ksfan.2012.25.1.026
  26. Farahmandfar, M., Zarrindast, M. R., Kadivar, M., Karimian, S. M. and Naghdi, N., "The Effect of Morphine Sensitization on Extracellular Concentrations of GABA in Dorsal Hippocampus of Male Rats," Eur. J. Pharmacol., 669, 66-70(2011). https://doi.org/10.1016/j.ejphar.2011.07.050
  27. Vehovszky, A., Bokisch, A. J., Krogsgaard-Larsen, P. and Walker, R. J., "Pharmacological Profile of Gamma-aminobutyric Acid (GABA) Receptors of Identified Central Neurones from Helix Aspersa," Comparative Biochemistry and Physiology Part C: Comparative Pharmacology., 92, 391-399(1989). https://doi.org/10.1016/0742-8413(89)90073-X
  28. Moore, S., "Amino Acid Analysis: Aqueous Dimethyl Sulfoxide as Solvent for the Ninhydrin Reaction," Journal of Biological Chemistry., 243, 6281-6283(1968). https://doi.org/10.1016/S0021-9258(18)94488-1
  29. Yemm, E. W., Cocking, E. C. and Ricketts, R. E., "The Determination of Amino-acids with Ninhydrin," The Analyst., 80, 209 (1955). https://doi.org/10.1039/an9558000209
  30. Lim, J. W. and Kang, I. J., "Fabrication of Chitosan-Gold Nanoshells for ${\gamma}$-Aminobutyric Acid Detection as a Surface-enhanced Raman Scattering Substrate," Bulletin of the Korean Chemical Society, 36, 672-677(2015). https://doi.org/10.1002/bkcs.10130
  31. Lim, J. W. and Kang, I. J., "Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules," Bulletin of the Korean Chemical Society, 35, 25-29(2014). https://doi.org/10.5012/bkcs.2014.35.1.25