DOI QR코드

DOI QR Code

Effect of Sintering Temperature on Dielectric Properties of 72 wt%(Al2O3):28 wt%(SiO2) Ceramics

  • Sahu, Manisha (Department of Electronics and Instrumentation, Siksha O Anusandhan (Deemed to be University)) ;
  • Panigrahi, Basanta Kumar (Department of Electrical Engineering, Siksha O Anusandhan (Deemed to be University)) ;
  • Kim, Hoe Joon (Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Deepti, PL (Department of Physics, Veer Surendra Sai University of Technology) ;
  • Hajra, Sugato (Department of Electronics and Instrumentation, Siksha O Anusandhan (Deemed to be University)) ;
  • Mohanta, Kalyani (Department of Ceramic Engineering, Indian Institute of Technology-Banaras Hindu University)
  • Received : 2020.07.03
  • Accepted : 2020.09.07
  • Published : 2020.10.27

Abstract

The various sintered samples comprising of 72 wt% (Al2O3) : 28 wt% (SiO2) based ceramics were fabricated using a colloidal processing route. The phase analysis of the ceramics was performed using an X-ray diffractometer (XRD) at room temperature confirming the presence of Al2O5Si and Al5.33Si0.67O9.33. The surface morphology of the fracture surface of the different sintered samples having different sizes of grain distribution. The resistive and capacitive properties of the three different sintered samples at frequency sweep (1 kHz to 1 MHz). The contribution of grain and the non-Debye relaxation process is seen for various sintered samples in the Nyquist plot. The ferroelectric loop of the various sintered sample shows a slim shape giving rise to low remnant polarization. The excitation performance of the sample at a constant electric signal has been examined utilizing a designed electrical circuit. The above result suggests that the prepared lead-free ceramic can act as a base for designing of dielectric capacitors or resonators.

Keywords

References

  1. B. Kanka and H. Schneider, J. Eur. Ceram. Soc., 20, 619 (2000). https://doi.org/10.1016/S0955-2219(99)00260-5
  2. L. Fernandes and R. Salomao, Mater. Res., 21, e20170783 (2018).
  3. S. Nath, A. K. Dubey and B. Basu, J. Biomater. Appl., 27, 67 (2012). https://doi.org/10.1177/0885328210393292
  4. T. Sato, M. Shizuka and M. Shimada, Ceram. Int., 12, 61 (1986). https://doi.org/10.1016/0272-8842(86)90018-0
  5. K. L. Luthra, J. Am. Ceram. Soc., 71, 274 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05801.x
  6. Y. Sakka, D. D. Bidinger and I. A. Aksay, J. Am. Ceram. Soc., 78, 479 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08827.x
  7. S. Hajra, M. Sahu, V. Purohit, K. Mohanta, B. K. Panigrahi and P. L. Deepti, Mater. Res. Express, 6, 126325 (2020). https://doi.org/10.1088/2053-1591/ab648f
  8. B. K. Paul, K. Haldar, D. Roy, B. Bagchi, A. Bhattacharya and S. Das, J. Adv. Ceram., 3, 278 (2014). https://doi.org/10.1007/s40145-014-0119-8
  9. Y.-W. Kim, H.-D. Kim and C. B. Park, J. Am. Ceram. Soc., 88, 3311 (2005). https://doi.org/10.1111/j.1551-2916.2005.00597.x
  10. F. C. Zhang, H. H. Luo and S. G. Roberts, J. Mater. Sci., 42, 6798 (2007). https://doi.org/10.1007/s10853-006-1402-z
  11. R. S. Carvalho, V. J. da Silva, R. B. da Nobrega, H. L. Lira and L. N. L. Santana, Ceramica, 66, 56 (2020). https://doi.org/10.1590/0366-69132020663772808
  12. S. Hajra, K. Mohanta, M. Sahu, V. Purohit and R. N. P. Choudhary, Appl. Phys. A: Mater. Sci. Process., 125, 369 (2019). https://doi.org/10.1007/s00339-019-2671-0
  13. A. Ray, P. Maji, A. Roy, S. Saha, P. Sadhukhan and S. Das, Mater. Res. Express, 6, 4 (2019).
  14. P. Uniyal and K. L. Yadav, Mater. Lett., 62, 2858 (2008). https://doi.org/10.1016/j.matlet.2008.01.103
  15. M. Kumar and K. L. Yadav, J. Phys.: Condens. Matter, 19, 242202 (2007). https://doi.org/10.1088/0953-8984/19/24/242202
  16. A. B. Hassena, F. I. H. Rhouma, M. Daoudic, J. Dhahri, M. Zaidi and N. Abdelmoula, RSC Adv., 9, 19285 (2019). https://doi.org/10.1039/C9RA02815C
  17. B. B. Arya and R. N. P. Choudhary, Ceram. Int., 46, 4222 (2020). https://doi.org/10.1016/j.ceramint.2019.10.141
  18. H. Yang, F. Yan, G. Zhang, Y. Lin and F. Wang, J. Alloys Compd., 720, 116 (2017). https://doi.org/10.1016/j.jallcom.2017.05.158
  19. P. L. Deepti, S. K. Patri and R. N. P. Choudhary, J. Mater. Sci.: Mater. Electron., 28, 024511 (2017).
  20. P. Dhak, D. Dhak, M. Das, K. Pramanik and P. Pramanik, Mater. Sci. Eng.: B, 164, 165 (2009). https://doi.org/10.1016/j.mseb.2009.09.011
  21. P. Dhak, D. Dhak, M. Das and P. Pramanik, J. Mater. Sci.: Mater. Electron., 22, 1750 (2011). https://doi.org/10.1007/s10854-011-0358-1
  22. S. Hajra, A. Tripathy, B. K. Panigrahi and R. N. P. Choudhary, Mater. Res. Express, 6, 076304 (2019). https://doi.org/10.1088/2053-1591/ab149b
  23. A. Kumar, V. V. B. Prasad, K. C. J. Raju and A. R. James, J. Mater. Sci.: Mater. Electron., 26, 3757 (2015). https://doi.org/10.1007/s10854-015-2899-1