DOI QR코드

DOI QR Code

Topic Modeling of Newspaper Articles on Government 'Senior job program' via Latent Dirichlet Allocation.

잠재디리클레할당 분석을 이용한 '노인일자리' 관련 신문기사 토픽분석

  • Lee, So-Chung (Namseoul University, Department of Elderly Welfare)
  • 이소정 (남서울대학교 노인복지학과)
  • Received : 2020.09.03
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

This study aims to find the structure of social disussion on government 'Senior job program' by analyzing 1107 newspaper articles on 'senior job program' from 11 major newspaper articles and 8 financial newspapers. Topic modeling via latent dirichlet allocation model was employed for analysis and as result, 5 latent topics were extracted as follows : general information, local government project propaganda, senior life related issues, employment creation effect and market relations. Until 2015, most of the articles focused on the first two topics, indicating not much discourse was formed concerning the characteristics of the program. However, after 2015, the third topic started to increase and after the launch of Moon Jae In government, there has been a drastic increase in the employment creation related topic indicating that current social discourse mirrored by the media is definitely focused on employment creation aspect of senior job program. Based on the result, this study suggests the necessity to increase the quality and also enhance employment aspects of Senior job program.

본 연구는 노인일자리사업의 사회적 논의구조를 분석하기 위해 대표적인 대중매체인 신문기사에서 다루어지는 노인일자리 관련 주요 토픽들과 시계열적 특성을 분석하였다. 이를 위해 뉴스 통합 데이터베이스인 빅카인즈에 수록된 11개 중앙지와 8개 경제지의 노인일자리사업 관련 기사 1107개에 대해 잠재디리클레할당 방법을 이용한 토픽분석을 실시해 언론 기사에 내재된 노인일자리사업의 잠재토픽을 추출하였다. 분석결과 노인일자리사업에 대한 일반적 정보전달, 지자체 사업 홍보, 노후생활, 고용효과, 시장연계 등 5개의 잠재토픽이 추출되었는데 2015년까지 대부분의 언론기사가 일반적 정보전달과 지자체 사업홍보에 국한되어 있어 노인일자리사업의 정체성에 대한 사회적 논의가 형성되지 못하였음을 알 수 있었던 반면 2015년 이후부터 노인일자리사업의 소득, 안전 등 노후생활 효과 관련 주제가 다루어지는 비중이 증가했으며 특히 문재인 정부 출범이후 고용효과와 관련된 기사가 압도적인 비중을 차지하게 되었음을 발견할 수 있었다. 본 연구는 이러한 결과에 근거해 향후 노인일자리사업의 질적측면 및 고용효과 측면을 증진시킬 수 있는 방안에 대한 고민의 필요성과 고용프레임 이외의 대안적 프레임 제시의 필요성을 제안하였다.

Keywords

References

  1. S. Kim. (2015). The Politics of Representing the Pain of Others : Regarding the Sewol Ferry Disaster, Media and Society, 23(4), 67-119.
  2. Korea Labor Force Development Institute for the Aged, www.kordi.or.kr
  3. Ministry of Government Legislation, www.moleg.go.kr
  4. G. Han & S. Yoon. (2007). Critical Review of Discourse on Aging in Korean Newspapers, Journal of the Korean Gerontological Society, 27(2), 299-322.
  5. E. J. Kim. (2017). How Media Makes the Elderly into Welcoming Citizens in the Aged Society, Korean Journal of Journalism and Communications, 61(3), 157-188. http://doi.org/10.20879/kjjcs.2017.61.3.005
  6. B. H. Lee & G.Y. Kim. (2019). The Themes and Trends of Discourse on the Elderly in Korea Identified by Analyzing Social Media Big Data, Social Welfare Policy, 46(3), 17-201.
  7. H.J. Oh & K.A. Shin. (2019). How does Korean News Media Cover News Stories of Older Adults? A Content Analysis of Korean News Articles Published After 2010, Journal of Public Relations, 23(4), 40-68. DOI: 10.15814/jpr.2019.23.4.40
  8. J. M. Lee. & Y. S. Park. (2018). A frame analysis of the conservative and progressive media on the Moon Jae In Government's welfare policy and budget, Journal of Budget and Policy, 7(2), 51-80. https://doi.org/10.35525/nabo.2018.7.2.003
  9. S.D. Yoo & J.S. Lee. (2017). Media Interest and Policy Decision of Child Welfare Issue : An Empirical Study on the Downs' Issue-Attention Cycle, Journal of Government Administration, 13, 29-60.
  10. I. K. Choi. (2012). Analysis on the types of the Reporting Behavior based on the Diffusion of Policy Issues : Focused on the Decision-making Process of the Basic Old Age Pension System, Journal of Regional Studies and Development, 21(1), 155-191.
  11. Y. M. Kim. (2016). Discourse about Recipients of the National Basic Livelihood Security by the Press, Journal of Critical Social Policy, 53, 282-325.
  12. Big Kinds, www.kinds.or.kr
  13. Y. M. Baek. (2019). Text-Mining Using R : Hanul Academy.
  14. Silge, J. & Robinson, D. (2017). Text Mining with R : A Tidy Approach : O'Reilly.
  15. DiMaggio, P., M. Nag & D. Blei. (2013). Exploiting affinities between topic modeling and the sociological perspective on culture : Application to newspaper coverage of U.S. government arts funding, Poetics, 41, 570-606. http://dx.doi.org/10.1016/j.poetic.2013.08.004.
  16. Blei, D.M., A. Ng, & M. Jordan. (2003). Latent Dirichlet Allocation, Journal of Machine Learning Research, 3, 993-1022.
  17. Blei, D.M. & J. D. Lafferty. (2006). Dynamic topic models. In : Pohoreckhy, A., Bottou, L., & Littman, M.L.(eds.), Proceedings of the International Conference on Machine Learning. 113-120.
  18. Liu, L., L. Tang, W. Dong, S. Yao & W. Zhou. (2016). An overview of topic modeling and its current applications in bioinformatics, SpringerPlus, 5(1608), http://doi.org/10.1186/s40064-016-3252-8
  19. McFarland, D.A., D. Ramage, J. Chuang, J. Heer, C.D. Manning & D. Jurafsky. (2013). Differentiating Language Usage Through Topic Models, Poetics, 41, 607-625. https://doi.org/10.1016/j.poetic.2013.06.004
  20. Hall, D., D. Jurafsky. & C. Manning. (2008). Studying the history of ideas using topic models. In: Laputa, M., Ng, H.T.(Program Co-Chairs), Proceedings of the 2008 Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, 363-371.
  21. B. R. Roh. & K. E. Yang. (2019). Text Mining Analysis of South Korea's Birth-rate Decline Issue in Newspaper Articles : Transition Patterns over 18 Years, Korean Journal of Social Welfare, 71(4), 154-176. https://doi.org/10.20970/kasw.2019.71.4.006
  22. Sutherland, I., Y. Sim., S. K. Lee, J. Byun & K. Kiatkawsin. (2020). Topic Modeling of Online Accommodation Reviews via Latent Dirichlet Allocation, Susainability, 12(182). DOI: 10.3390/su12051821.