References
- S. Kim. (2015). The Politics of Representing the Pain of Others : Regarding the Sewol Ferry Disaster, Media and Society, 23(4), 67-119.
- Korea Labor Force Development Institute for the Aged, www.kordi.or.kr
- Ministry of Government Legislation, www.moleg.go.kr
- G. Han & S. Yoon. (2007). Critical Review of Discourse on Aging in Korean Newspapers, Journal of the Korean Gerontological Society, 27(2), 299-322.
- E. J. Kim. (2017). How Media Makes the Elderly into Welcoming Citizens in the Aged Society, Korean Journal of Journalism and Communications, 61(3), 157-188. http://doi.org/10.20879/kjjcs.2017.61.3.005
- B. H. Lee & G.Y. Kim. (2019). The Themes and Trends of Discourse on the Elderly in Korea Identified by Analyzing Social Media Big Data, Social Welfare Policy, 46(3), 17-201.
- H.J. Oh & K.A. Shin. (2019). How does Korean News Media Cover News Stories of Older Adults? A Content Analysis of Korean News Articles Published After 2010, Journal of Public Relations, 23(4), 40-68. DOI: 10.15814/jpr.2019.23.4.40
- J. M. Lee. & Y. S. Park. (2018). A frame analysis of the conservative and progressive media on the Moon Jae In Government's welfare policy and budget, Journal of Budget and Policy, 7(2), 51-80. https://doi.org/10.35525/nabo.2018.7.2.003
- S.D. Yoo & J.S. Lee. (2017). Media Interest and Policy Decision of Child Welfare Issue : An Empirical Study on the Downs' Issue-Attention Cycle, Journal of Government Administration, 13, 29-60.
- I. K. Choi. (2012). Analysis on the types of the Reporting Behavior based on the Diffusion of Policy Issues : Focused on the Decision-making Process of the Basic Old Age Pension System, Journal of Regional Studies and Development, 21(1), 155-191.
- Y. M. Kim. (2016). Discourse about Recipients of the National Basic Livelihood Security by the Press, Journal of Critical Social Policy, 53, 282-325.
- Big Kinds, www.kinds.or.kr
- Y. M. Baek. (2019). Text-Mining Using R : Hanul Academy.
- Silge, J. & Robinson, D. (2017). Text Mining with R : A Tidy Approach : O'Reilly.
- DiMaggio, P., M. Nag & D. Blei. (2013). Exploiting affinities between topic modeling and the sociological perspective on culture : Application to newspaper coverage of U.S. government arts funding, Poetics, 41, 570-606. http://dx.doi.org/10.1016/j.poetic.2013.08.004.
- Blei, D.M., A. Ng, & M. Jordan. (2003). Latent Dirichlet Allocation, Journal of Machine Learning Research, 3, 993-1022.
- Blei, D.M. & J. D. Lafferty. (2006). Dynamic topic models. In : Pohoreckhy, A., Bottou, L., & Littman, M.L.(eds.), Proceedings of the International Conference on Machine Learning. 113-120.
- Liu, L., L. Tang, W. Dong, S. Yao & W. Zhou. (2016). An overview of topic modeling and its current applications in bioinformatics, SpringerPlus, 5(1608), http://doi.org/10.1186/s40064-016-3252-8
- McFarland, D.A., D. Ramage, J. Chuang, J. Heer, C.D. Manning & D. Jurafsky. (2013). Differentiating Language Usage Through Topic Models, Poetics, 41, 607-625. https://doi.org/10.1016/j.poetic.2013.06.004
- Hall, D., D. Jurafsky. & C. Manning. (2008). Studying the history of ideas using topic models. In: Laputa, M., Ng, H.T.(Program Co-Chairs), Proceedings of the 2008 Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, 363-371.
- B. R. Roh. & K. E. Yang. (2019). Text Mining Analysis of South Korea's Birth-rate Decline Issue in Newspaper Articles : Transition Patterns over 18 Years, Korean Journal of Social Welfare, 71(4), 154-176. https://doi.org/10.20970/kasw.2019.71.4.006
- Sutherland, I., Y. Sim., S. K. Lee, J. Byun & K. Kiatkawsin. (2020). Topic Modeling of Online Accommodation Reviews via Latent Dirichlet Allocation, Susainability, 12(182). DOI: 10.3390/su12051821.