DOI QR코드

DOI QR Code

Effect of H2SO4 and Reaction Time on Synthesis of 5Mg(OH)2·MgSO4·3H2O Whiskers using Hydrothermal Reaction

수열반응을 이용한 침상형 5Mg(OH)2·MgSO4·3H2O 합성에 대한 H2SO4와 반응 시간의 영향

  • Choi, Areum (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Oh, Nuri (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, YooJin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology)
  • 최아름 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오누리 (한양대학교 신소재공학과) ;
  • 김유진 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2020.10.05
  • Accepted : 2020.10.23
  • Published : 2020.10.28

Abstract

Magnesium hydroxide sulfate hydrate (MHSH) whiskers were synthesized via a hydrothermal reaction by using MgO as the reactant as well as the acid solution. The effects of the H2SO4 amount and reaction time at the same temperature were studied. In general, MHSH whiskers were prepared using MgSO4 in aqueous ammonia. In this work, to reduce the formation of impurities and increase the purity of MHSH, we employed a synthesis technique that did not require the addition of a basic solution. Furthermore, the pH value, which was controlled by the H2SO4 amount, acted as an important factor for the formation of high-purity MHSH. MgO was used as the raw material because it easily reacts in water and forms Mg+ and MgOH+ ions that bind with SO42- ions to produce MHSH. Their morphologies and structures were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Keywords

References

  1. H. Lu, Y. Hu, L. Yang, Z. Wang, Z. Chen and W. Fan: Macromol. Mater. Eng., 289 (2004) 984. https://doi.org/10.1002/mame.200400165
  2. C. Gao, X. Li, L. Feng, Z. Xiang and D. Zhang: Chem. Eng. J., 150 (2009) 551. https://doi.org/10.1016/j.cej.2008.12.029
  3. H. Iwanaga, T. Iwasaki, K. Reisen, T. Matusunami, M. Ichihara and S. Takeunchi: J. Am. Ceram. Soc., 75 (1992) 1297. https://doi.org/10.1111/j.1151-2916.1992.tb05577.x
  4. H. Lu, Y. Hu, J. Xiao, Z. Wang, Z. Chen and W. Fan: J. Mater. Sci., 41 (2006) 363. https://doi.org/10.1007/s10853-005-2374-0
  5. L. Xiang, F. Liu, J. Li and Y. Jin: Mater. Chem. Phys., 87 (2004) 424. https://doi.org/10.1016/j.matchemphys.2004.06.021
  6. J. Li, L. Xiang and Y. Jin: J. Mater. Sci., 41 (2006) 1345. https://doi.org/10.1007/s10853-006-7339-4
  7. X. T. Sun, W. T. Shi and W. C. Zhu: Nanoscale Res. Lett., 3 (2008) 386. https://doi.org/10.1007/s11671-008-9171-z
  8. R. Yu, J. H. Pee, H. T. Kim, K. J. Kim, Y. W. Kim, W. Kim and Y. Kim: J. Korean Powder Metall. Inst., 18 (2011) 283. https://doi.org/10.4150/KPMI.2011.18.3.283
  9. R. Yu, J. H. Pee, H. T. Kim and Y. Kim: J. Korean Ceram. Soc., 50 (2013) 201. https://doi.org/10.4191/kcers.2013.50.3.201
  10. R. Yu and J. Kim: J. Korean Powder Metall. Inst., 26 (2019) 195. https://doi.org/10.4150/KPMI.2019.26.3.195
  11. C. Henrist, J. P. Mathieu, C. Vogels, A. Rulmont and R. Cloots: J. Cryst. Growth, 249 (2003) 321. https://doi.org/10.1016/S0022-0248(02)02068-7
  12. X. Yan, D. Xu and D. Xue: Acta Mater., 55 (2007) 5747. https://doi.org/10.1016/j.actamat.2007.06.023
  13. H. Watanabe, S. Iwata, K. Hashimoto, F. Misaizu and K. Fuke: J. Am. Chem. Soc., 117 (1995) 755. https://doi.org/10.1021/ja00107a019