DOI QR코드

DOI QR Code

Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review

  • Cheng, Wei Nee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Han, Sung Gu (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2020.03.15
  • Accepted : 2020.05.04
  • Published : 2020.11.01

Abstract

Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.

Keywords

References

  1. Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 2016;72:377-82. https://doi.org/10.1007/s00284-015-0958-8
  2. Hogeveen H, Steeneveld W, Wolf CA. Production diseases reduce the efficiency of dairy production: A review of the results, methods, and approaches regarding the economics of mastitis. Annu Rev Resour Economics 2019;11:289-312. https://doi.org/10.1146/annurev-resource-100518-093954
  3. Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci 2008; 86:57-65. https://doi.org/10.2527/jas.2007-0302
  4. Khan M, Khan A. Basic facts of mastitis in dairy animals: a review. Pak Vet J 2006;26:204-8.
  5. Kibebew K. Bovine mastitis: A review of causes and epidemiological point of view. J Biol Agric Healthc 2017;7:1-14.
  6. Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev 2001;50:245-59. https://doi.org/10.1016/S0169-409X(01)00160-0
  7. Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res 2016;12:270. https://doi.org/10.1186/s12917-016-0905-3
  8. Romero J, Benavides E, Meza C. Assessing financial impacts of subclinical mastitis on colombian dairy farms. Front Vet Sci 2018;5:273. http://doi.org/10.3389/fvets.2018.00273
  9. Klaas IC, Zadoks RN. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 2018;65 (Suppl 1):166-85. https://doi.org/10.1111/tbed.12704
  10. Lakew BT, Fayera T, Ali YM. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Trop Anim Health Prod 2019; 51:1507-13. https://doi.org/10.1007/s11250-019-01838-w
  11. Schreiner D, Ruegg P. Effects of tail docking on milk quality and cow cleanliness. J Dairy Sci 2002;85:2503-11. https://doi. org/10.3168/jds.S0022-0302(02)74333-6
  12. Sharma N, Singh N, Bhadwal M. Relationship of somatic cell count and mastitis: An overview. Asian-Australas J Anim Sci 2011;24:429-38. https://doi.org/10.5713/ajas.2011.10233
  13. Smith KL, Hogan JS. Environmental mastitis. Vet Clin North Am Food Anim Pract 1993; 9:489-98. https://doi.org/10.1016/S0749-0720(15)30616-2
  14. Bradley AJ. Bovine mastitis: an evolving disease. Vet J 2002;164:116-28. https://doi.org/10.1053/tvjl.2002.0724
  15. Bogni C, Odierno L, Raspanti C, et al. War against mastitis: current concepts on controlling bovine mastitis pathogens. In: Mendez-Vilas A, editor. Science against microbial pathogens: communicafing current research and technological advances. Badajoz, Spain: Formatex Research Center; 2011. p. 483-94.
  16. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179-85. https://doi.org/10.1016/S0378-1135(02)00360-7
  17. Rainard P, Foucras G, Fitzgerald JR, et al. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis 2018;65(Suppl 1):149-65. https://doi.org/10.1111/tbed.12698
  18. Gilbert FB, Cunha P, Jensen K, et al. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res 2013;44:40. https://doi.org/10.1186/1297-9716-44-40
  19. Hamid S, Bhat MA, Mir IA, et al. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet World 2017;10:363-7. http://doi.org/10.14202/vetworld.2017.363-367
  20. Oliveira M, Bexiga R, Nunes SF, Vilela CL. Invasive potential of biofilm-forming Staphylococci bovine subclinical mastitis isolates. J Vet Sci 2011;12:95-7. https://doi.org/10.4142/jvs.2011.12.1.95
  21. Scali F, Camussone C, Calvinho LF, Cipolla M, Zecconi A. Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015;100:88-99. https://doi.org/10.1016/j.rvsc.2015.03.019
  22. Gomes F, Saavedra MJ, Henriques M. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog Dis 2016;74:ftw006. https://doi.org/10.1093/femspd/ftw006
  23. Melchior M, Vaarkamp H, Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? Vet J 2006;171:398-407. https://doi.org/10.1016/j.tvjl.2005.01.006
  24. Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 2008;18:1049-56. https://doi.org/10.1016/j.pnsc.2008.04.001
  25. Arslan S, Ozkardes F. Slime production and antibiotic susceptibility in Staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007;102:29-33. https://doi.org/10.1590/S0074-02762007000100004
  26. Amini B, Baghchesaraie H, Faghihi MHO. Effect of different sub MIC concentrations of penicillin, vancomycin and ceftazidime on morphology and some biochemical properties of Staphylococcus aureus and Pseudomonas aeruginosa isolates. Iranian J Microbiol 2009;1:43-7.
  27. Asli A, Brouillette E, Ster C, et al. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PloS One 2017; 12:e0176988. https://doi.org/10.1371/journal.pone.0176988
  28. Jorgensen H, Nordstoga A, Sviland S, et al. Streptococcus agalactiae in the environment of bovine dairy herds-rewriting the textbooks? Vet Microbiol 2016;184:64-72. https://doi.org/10.1016/j.vetmic.2015.12.014
  29. Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 2015; 5:6. http://doi.org/10.3389/fcimb.2015.00006
  30. McAuliffe L, Ellis RJ, Miles K, Ayling RD, Nicholas RA. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 2006;152:913-22. http://doi.org/10.1099/mic.0.28604-0
  31. Nicholas RA, Fox LK, Lysnyansky I. Mycoplasma mastitis in cattle: To cull or not to cull. Vet J 2016;216:142-7. https://doi.org/10.1016/j.tvjl.2016.08.001
  32. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10689-92. http://doi.org/10.1074/jbc.274.16.10689
  33. Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res 2003;34:521-64. http://doi.org/10.1051/vetres:2003023
  34. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84. https://doi.org/10.1038/ni.1863
  35. Maturu P, Overwijk WW, Hicks J, Ekmekcioglu S, Grimm EA, Huff V. Characterization of the inflammatory microenvironment and identification of potential therapeutic targets in wilms tumors. Transl Oncol 2014;7:484-92. http://doi.org/10.1016/j.tranon.2014.05.008
  36. Ezzat Alnakip M, Quintela-Baluja M, Bohme K, et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med 2014;2014: 659801. https://doi.org/10.1155/2014/659801
  37. Fernandes JBC, Zanardo LG, Galvao NN, Carvalho IA, Nero LA, Moreira MAS. Escherichia coli from clinical mastitis: serotypes and virulence factors. J Vet Diagn Invest 2011;23:1146-52. https://doi.org/10.1177/1040638711425581
  38. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123-40. https://doi.org/10.1038/nrmicro818
  39. Elhadidy M, Zahran E. Biofilm mediates Enterococcus faecalis adhesion, invasion and survival into bovine mammary epithelial cells. Lett Appl Microbiol 2014;58:248-54. https://doi.org/10.1111/lam.12184
  40. Rozanska H, Lewtak-Pilat A, Kubajka M, Weiner M. Occurrence of enterococci in mastitic cow's milk and their antimicrobial resistance. J Vet Res 2019;63:93-7. https://doi.org/10.2478/jvetres-2019-0014
  41. Taponen S, Pyorala S. Coagulase-negative Staphylococci as cause of bovine mastitis-Not so different from Staphylococcus aureus? Vet Microbiol 2009;134:29-36. https://doi.org/10.1016/j.vetmic.2008.09.011
  42. Simojoki H, Hyvonen P, Ferrer CP, Taponen S, Pyorala S. Is the biofilm formation and slime producing ability of coagulase-negative Staphylococci associated with the persistence and severity of intramammary infection? Vet Microbiol 2012;158: 344-52. https://doi.org/10.1016/j.vetmic.2012.02.031
  43. Abureema S, Smooker P, Malmo J, Deighton M. Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain. J Dairy Sci 2014;97:285- 90. https://doi.org/10.3168/jds.2013-7074
  44. Varhimo E, Varmanen P, Fallarero A, et al. Alpha- and ${\beta}$-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet Microbiol 2011; 149:381-9. https://doi.org/10.1016/j.vetmic.2010.11.010
  45. Kromker V, Reinecke F, Paduch J-H, Grabowski N. Bovine Streptococcus uberis intramammary infections and mastitis. Clin Microbial 2014;3:4. http://doi.org/10.4172/2327-5073.1000157
  46. Shaheen M, Tantary H, Nabi S. A treatise on bovine mastitis: disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. Adv Dairy Res 2016;4:1. http://doi.org/10.4172/2329-888X.1000150
  47. Washburn SP, White SL, Green Jr JT, Benson GA. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J Dairy Sci 2002;85:105-11. https://doi.org/10.3168/jds.S0022-0302(02)74058-7
  48. Curone G, Filipe J, Cremonesi P, et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res Vet Sci 2018;116:88-98. https://doi.org/10.1016/j.rvsc.2017.11.020
  49. Waller KP, Persson Y, Nyman A-K, Stengarde L. Udder health in beef cows and its association with calf growth. Acta Vet Scand 2014;56:9. https://doi.org/10.1186/1751-0147-56-9
  50. Sharma T, Das PK, Ghosh PR, Banerjee D, Mukherjee J. Association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows. Vet World 2017;10:342-7. http://doi.org/10.14202/vetworld.2017.342-347
  51. Krol J, Brodziak A, Litwinczuk Z, Litwinczuk A. Effect of age and stage of lactation on whey protein content in milk of cows of different breeds. Pol J Vet Sci 2013;16:395-7. http://doi.org/10.2478/pjvs-2013-0055
  52. Drackley JK. Biology of dairy cows during the transition period: The final frontier? J Dairy Sci 1999;82:2259-73. https://doi.org/10.3168/jds.S0022-0302(99)75474-3
  53. De Visscher A, Piepers S, Haesebrouck F, De Vliegher S. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. J Dairy Sci 2016; 99:6457-69. https://doi.org/10.3168/jds.2015-10458
  54. Fadlelmula A, Al Dughaym AM, Mohamed GE, Al Deib MK, Al Zubaidy AJ. Bovine mastitis: epidemiological, clinical and etiological study in a Saudi Arabian large dairy farm. Bulg J Vet Med 2009;12:199-206.
  55. Sharma N, Singh NK, Singh OP, Pandey V, Verma PK. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas J Anim Sci 2011;24:479-84. https://doi.org/10.5713/ajas.2011.10220
  56. Matsui T. Vitamin C nutrition in cattle. Asian-Australas J Anim Sci 2012;25:597-605. https://doi.org/10.5713/ajas.2012.r.01
  57. Chandra G, Aggarwal A, Singh AK, Kumar M, Upadhyay RC. Effect of vitamin E and zinc supplementation on energy metabolites, lipid peroxidation, and milk production in peripartum sahiwal cows. Asian-Australas J Anim Sci 2013;26:1569-76. https://doi.org/10.5713/ajas.2012.12682
  58. Bayril T, Yildiz AS, Akdemir F, Yalcin C, Kose M, Yilmaz O. The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australas J Anim Sci 2015;28:1133-9. http://doi.org/10.5713/ajas.14.0960
  59. Weigel KA, Shook GE. Genetic selection for mastitis resistance. Vet Clin Food Anim Pract 2018;34:457-72. https://doi. org/10.1016/j.cvfa.2018.07.001
  60. Zeinhom MMA, Aziz RLA, Mohammed AN, Bernabucci U. Impact of seasonal conditions on quality and pathogens content of milk in Friesian cows. Asian-Australas J Anim Sci 2016;29:1207-13. https://doi.org/10.5713/ajas.16.0143
  61. Breen J. The importance of teat disinfection in mastitis control. Livestock 2019;24:122-8. http://doi.org/10.12968/live.2019. 24.3.122
  62. Blowey RW, Edmondson P. Mastitis control in dairy herds. 2nd ed. Oxfordshire, UK: CAB International; 2010.
  63. Down P, Bradley AJ, Breen J, Hudson C, Green MJ. Current management practices and interventions prioritised as part of a nationwide mastitis control plan. Vet Rec 2016;178:449. http://doi.org/10.1136/vr.103203
  64. Hossain M, Paul S, Hossain M, Islam M, Alam M. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J Vet Sci Anim Husb 2017;4:1030.
  65. Bhutto A, Murray R, Woldehiwet Z. California mastitis test scores as indicators of subclinical intra-mammary infections at the end of lactation in dairy cows. Res Vet Sci 2012;92:13-7. https://doi.org/10.1016/j.rvsc.2010.10.006
  66. Biggs A. Update on dry cow therapy 1. antibiotic v non-antibiotic approaches. In Practice 2017;39:255-72. https://doi.org/10.1136/inp.j2226
  67. Ricci A, Allende A, Bolton D, et al. Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA J 2017;15: e04665. https://doi.org/10.2903/j.efsa.2017.4665
  68. Du Preez J. Bovine mastitis therapy and why it fails: continuing education. J South Afr Vet Assoc 2000;71:a714. http://doi.org/10.4102/jsava.v71i3.714
  69. Ismail ZB. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Vet World 2017;10:1057-62. http://doi.org/10.14202/vetworld.2017.1057-1062
  70. Deb R, Kumar A, Chakraborty S, et al. Trends in diagnosis and control of bovine mastitis: a review. Pak J Biol Sci 2013;16:1653-61. http://doi.org/10.3923/pjbs.2013.1653.1661
  71. Schukken Y, Bronzo V, Locatelli C, et al. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative Staphylococci intramammary infection dynamics in 2 dairy herds. J Dairy Sci 2014;97:5250-64. https://doi.org/10.3168/jds.2014-8008
  72. Bradley AJ, Breen J, Payne B, White V, Green MJ. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J Dairy Sci 2015;98:1706-20. https://doi. org/10.3168/jds.2014-8332
  73. Landin H, Mork MJ, Larsson M, Waller KP. Vaccination against Staphylococcus aureus mastitis in two Swedish dairy herds. Acta Vet Scand 2015;57:81. https://doi.org/10.1186/s13028-015-0171-6
  74. Freick M, Frank Y, Steinert K, et al. Mastitis vaccination using a commercial polyvalent vaccine or a herd-specific Staphylococcus aureus vaccine. Tierarztl Prax Ausg G Grosstiere Nutztiere 2016;44:219-29. http://doi.org/10.15653/TPG-150912
  75. Ruegg PL. A 100-year review: Mastitis detection, management, and prevention. J Dairy Sci 2017;100:10381-97. https://doi.org/10.3168/jds.2017-13023
  76. De Vliegher S, Fox L, Piepers S, McDougall S, Barkema H. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J Dairy Sci 2012;95:1025-40. https://doi.org/10.3168/jds.2010-4074
  77. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014;6:25-64. Perspect Medicin Chem 2014; 6:25-64. https://doi.org/10.4137/PMC.S14459
  78. Suriyasathaporn W, Chupia V, Sing-Lah T, Wongsawan K, Mektrirat R, Chaisri W. Increases of antibiotic resistance in excessive use of antibiotics in smallholder dairy farms in northern Thailand. Asian-Australas J Anim Sci 2012;25:1322-8. https://doi.org/10.5713/ajas.2012.12023
  79. Yang W-T, Ke C-Y, Wu W-T, Lee R-P, Tseng Y-H. Effective treatment of bovine mastitis with intramammary infusion of Angelica dahurica and Rheum officinale extracts. Evid Based Complement Alternat Med 2019; 2019:7242705. https://doi. org/10.1155/2019/7242705
  80. Heikkila A-M, Liski E, Pyorala S, Taponen S. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 2018;101:9493-504. http://doi.org/10.3168/jds.2018-14824
  81. Anantasook N, Wanapat M, Cherdthong A, Gunun P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas J Anim 2013;26:820-6. https://doi.org/10.5713/ajas.2012.12689
  82. Pasca C, Marghitas L, Dezmirean D, et al. Medicinal plants based products tested on pathogens isolated from mastitis milk. Molecules 2017;22:1473. https://doi.org/10.3390/molecules22091473
  83. He X, Wei Z, Zhou E, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated $NF-{\kappa}B$ and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 2015;28:470-6. https://doi.org/10.1016/j.intimp.2015.07.012
  84. Zhao Q, Yuan F, Liang T, et al. Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J Dairy Sci 2018;101:2415-22. https://doi.org/10.3168/jds.2017-13349
  85. Guo M, Zhang N, Li D, et al. Baicalin plays an anti-inflammatory role through reducing nuclear $factor-{\kappa}B$ and p38 phosphorylation in S. aureus-induced mastitis. Int Immunopharmacol 2013;16:125-30. https://doi.org/10.1016/j.intimp.2013.03.006
  86. Guo M, Cao Y, Wang T, et al. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur J Pharmacol 2014;723:481-8. https://doi.org/10.1016/j.ejphar.2013.10.032
  87. Yang W, Li H, Cong X, et al. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating $NF-{\kappa}B$ and HSP72. Int Immunopharmacol 2016;40:139-45. https://doi.org/10.1016/j.intimp.2016.08.032
  88. Liang D, Li F, Fu Y, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of $NF-{\kappa}B$ and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 2014; 37:214-22. https://doi.org/10.1007/s10753-013-9732-x
  89. Wei Z, Zhou E, Guo C, et al. Thymol inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting $NF-{\kappa}B$ activation. Microb Pathog 2014;71:15-9. http://doi.org/10.1016/j.micpath.2014.01.004
  90. Jin X, Wang K, Liu H, F Hu, Zhao F, Liu J. Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol. Oxid Med Cell Longev 2016;2016:2572175. https://doi.org/10.1155/2016/2572175
  91. Zhang L, Sun L, Wei R, et al. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother 2017;61:e01990-16. http://doi.org/10.1128/AAC.01990-16
  92. Fu Y, Gao R, Cao Y, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated $NF-{\kappa}B$ signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2014;20:54-8. https://doi.org/10.1016/j.intimp.2014.01.024
  93. Suresh S, Sankar P, Telang AG, Kesavan M, Sarkar SN. Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing $NF-{\kappa}B$ signaling and inflammation. Int Immunopharmacol 2018;65:408-12. https://doi.org/10.1016/j.intimp.2018.10.034
  94. Hashemzadeh-Cigari F, Khorvash M, Ghorbani G, et al. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J Dairy Sci 2014;97:7487-97. https://doi.org/10.3168/jds.2014-7989
  95. Fratini F, Casella S, Leonardi M, et al. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014; 96:1-7. https://doi.org/10.1016/j.fitote.2014. 04.003
  96. Fratini F, Mancini S, Turchi B, et al. A novel interpretation of the fractional inhibitory concentration index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol Res 2017;195:11-7. https://doi.org/10.1016/j.micres.2016.11.005
  97. Cho B-W, Cha C-N, Lee S-M, et al. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J Vet Res 2015;55:253-7. https://doi.org/10.14405/kjvr.2015.55.4.253
  98. Lejonklev J, Kidmose U, Jensen S, et al. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J Dairy Sci 2016;99:7898-903. https://doi.org/10.3168/jds.2016-10910
  99. Muthaiyan A, Martin EM, Natesan S, et al. Antimicrobial effect and mode of action of terpeneless cold-pressed Valencia orange essential oil on methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2012;112:1020-33. https://doi.org/10.1111/j.1365-2672.2012.05270.x
  100. Federman C, Joo J, Almario J, Salaheen S, Biswas D. Citrus-derived oil inhibits Staphylococcus aureus growth and alters its interactions with bovine mammary cells. J Dairy Sci 2016; 99:3667-74. https://doi.org/10.3168/jds.2015-10538
  101. Federman C, Ma C, Biswas D. Major components of orange oil inhibit Staphylococcus aureus growth and biofilm formation, and alter its virulence factors. J Med Microbiol 2016;65:688-95. http://doi.org/10.1099/jmm.0.000286
  102. Garcia M, Elsasser TH, Biswas D, Moyes KM. The effect of citrus-derived oil on bovine blood neutrophil function and gene expression in vitro. J Dairy Sci 2015;98:918-26. https://doi.org/10.3168/jds.2014-8450
  103. Jeong CH, Cheng WN, Bae H, et al. Bee venom decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol 2017;27:1827-36. https://doi.org/10.4014/jmb.1706.06003
  104. Wang K, Jin X-L, Shen X-G, et al. Effects of Chinese propolis in protecting bovine mammary epithelial cells against mastitis pathogens-induced cell damage. Mediators Inflamm 2016;2016:8028291. https://doi.org/10.1155/2016/8028291
  105. El Hafez SMA, Ismael AB, Mahmoud MB, Elaraby A-KA. Development of new strategy for non-antibiotic therapy: bovine lactoferrin has a potent antimicrobial and immunomodulator effects. Adv Infect Dis 2013;3:185-92. http://doi.org/10.4236/aid.2013.33027
  106. Piccart K, Vasquez A, Piepers S, De Vliegher S, Olofsson TC. Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. J Dairy Sci 2016;99:2940-4. https://doi.org/10.3168/jds.2015-10208
  107. Vasquez A, Forsgren E, Fries I, et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS One 2012;7:e33188. https://doi.org/10.1371/journal.pone.0033188
  108. Pellegrino MS, Frola ID, Natanael B, Gobelli D, Nader-Macias MEF, Bogni CI. In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicro Prot 2019;11:74-84. https://doi.org/10.1007/s12602-017-9383-6
  109. Bouchard DS, Seridan B, Saraoui T, et al. Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis. PloS One 2015;10:e0144831. https://doi.org/10.1371/journal.pone.0144831
  110. Cao L, Wu J, Xie F, Hu S, Mo Y. Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci 2007;90:3980-5. https://doi.org/10.3168/jds.2007-0153
  111. Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 2013;11:95-105. https://doi.org/10.1038/nrmicro2937
  112. Bierbaum G, Sahl H-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 2009;10:2-18. http://doi.org/10.2174/138920109787048616
  113. Cotter PD, Hill C, Ross RP. Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88. https://doi.org/10.1038/nrmicro1273
  114. De Freire Bastos MdC, Coelho MLV, da Silva Santos OC. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015;161:683-700. http://doi.org/10.1099/mic.0.082289-0
  115. Field D, O'Connor R, Cotter PD, Ross RP, Hill C. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 2016;7:508. http://doi.org/10.3389/fmicb.2016.00508
  116. Castelani L, Arcaro JRP, Braga JEP, et al. Activity of nisin, lipid bilayer fragments and cationic nisin-lipid nanoparticles against multidrug-resistant Staphylococcus spp. isolated from bovine mastitis. J Dairy Sci 2019;102:678-83. https://doi.org/10.3168/jds.2018-15171
  117. Ceotto-Vigoder H, Marques SLS, Santos INS, et al. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol 2016;121:101-14. https://doi.org/10.1111/jam.13136
  118. Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017;43:583-601. https://doi.org/10.1080/1040841X.2016.1271309
  119. Varela-Ortiz DF, Barboza-Corona JE, Gonzalez-Marrero J, et al. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun 2018; 42:243-50. https://doi.org/10.1007/s11259-018-9730-4
  120. Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 2016;99:2053-62. https://doi.org/10.3168/jds.2015-9748
  121. Fan J, Zeng Z, Mai K, et al. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 2016;191:65-71. https://doi.org/10.1016/j.vetmic. 2016.06.001
  122. Felipe V, Breser ML, Bohl LP, et al. Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 2019; 126:60-7. https://doi.org/10.1016/j.ijbiomac.2018.12.159
  123. Orellano MS, Isaac P, Breser ML, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 2019; 213:1-9. https://doi.org/10.1016/j.carbpol.2019.02.016
  124. Lanctot S, Fustier P, Taherian AR, Bisakowski B, Zhao X, Lacasse P. Effect of intramammary infusion of chitosan hydrogels at drying-off on bovine mammary gland involution. J Dairy Sci 2017;100:2269-81. https://doi.org/10.3168/jds.2016-12087
  125. Zhang X, Wang Y, Xiao C, et al. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and $NF-{\kappa}B$ signaling pathway. Microb Pathog 2017;107:462-7. https://doi.org/10.1016/j.micpath.2017.04.002
  126. Gao XJ, Guo MY, Zhang ZC, et al. Bergenin plays an anti-inflammatory role via the modulation of MAPK and $NF-{\kappa}B$ signaling pathways in a mouse model of LPS-induced mastitis. Inflammation 2015;38:1142-50. https://doi.org/10.1007/s10753-014-0079-8
  127. Song X, Wang T, Zhang Z, et al. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis. Inflammation 2015;38:79-88. https://doi.org/10.1007/s10753-014-0009-9
  128. Guo YF, Xu NN, Sun W, Zhao Y, Li C, Guo M. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting $NF-{\kappa}B$ activation and MMPs expression. Oncotarget 2017; 8:28481-93. https://doi.org/10.18632/onco target.16092
  129. Wu H, Zhao G, Jiang K, et al. Puerarin exerts an antiinflammatory effect by inhibiting NF-kB and MAPK activation in Staphylococcus aureus-induced mastitis. Phytother Res 2016;30:1658-64. http://doi.org/10.1002/ptr.5666
  130. Wang J, Guo C, Wei Z, et al. Morin suppresses inflammatory cytokine expression by downregulation of nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J Dairy Sci 2016;99:3016-22. https://doi.org/10.3168/jds.2015-10330
  131. Zhang J, Zhang Y, Huang H, et al. Forsythoside A inhibited S. aureus stimulated inflammatory response in primary bovine mammary epithelial cells. Microb Pathog 2018;116:158-63. https://doi.org/10.1016/j.micpath.2018.01.002
  132. Kang S, Lee JS, Lee HC, et al. Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol 2016;26:579-87. https://doi.org/10.4014/jmb.1510.10070
  133. Cheng WN, Jeong CH, Seo HG, Han SG. Moringa extract attenuates inflammatory responses and increases gene expression of casein in bovine mammary epithelial cells. Animals 2019;9:391. https://doi.org/10.3390/ani9070391
  134. Montironi ID, Cariddi LN, Reinoso EB. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev Argent Microbiol 2016;48:210-6. https://doi.org/10.1016/j.ram.2016.04.005
  135. Okmen G, Cantekin Z, Alam MI, Turkcan O, Ergun Y. Antibacterial and antioxidant activities of Liquidambar orientalis mill. various extracts against bacterial pathogens causing mastitis. Turkish J Agric-Food Sci Technol 2017;5:883-7. https://doi.org/10.24925/turjaf.v5i8.883-887.1163
  136. Mushtaq S, Rather MA, Qazi PH, et al. Isolation and characterization of three benzylisoquinoline alkaloids from Thalictrum minus L. and their antibacterial activity against bovine mastitis. J Ethnopharmacol 2016;193:221-6. https://doi.org/10.1016/j.jep.2016.07.040
  137. Gomes F, Martins N, Ferreira ICFR, Henriques M. Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon 2019;5:e01728. https://doi.org/10.1016/j.heliyon.2019.e01728
  138. Kher MN, Sheth NR, Bhatt VD. In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim Biotechnol 2019;30:151-8. https://doi.org/10.1080/10495398.2018.1451752
  139. Hong H, Lee J-H, Kim S-K. Phytochemicals and antioxidant capacity of some tropical edible plants. Asian-Australas J Anim Sci 2018;31:1677-84. https://doi.org/10.5713/ajas.17.0903
  140. Montironi ID, Reinoso EB, Paullier VC, et al. Minthostachys verticillata essential oil activates macrophage phagocytosis and modulates the innate immune response in a murine model of Enterococcus faecium mastitis. Res Vet Sci 2019;125:333-44. https://doi.org/10.1016/j.rvsc.2019.07.015
  141. Zhu H, Du M, Fox L, Zhu M-J. Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens. Food Control 2016;66:291-9. https://doi.org/10.1016/j.food cont.2016.02.013
  142. Piotr S, Magdalena Z, Joanna P, Barbara K, Slawomir M. Essential oils as potential anti-staphylococcal agents. Acta Vet-Beograd 2018;68:95-107. https://doi.org/10.2478/acve-2018-0008

Cited by

  1. Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens vol.20, pp.1, 2020, https://doi.org/10.1080/1828051x.2021.1958077
  2. The Role of Streptococcus spp. in Bovine Mastitis vol.9, pp.7, 2020, https://doi.org/10.3390/microorganisms9071497
  3. Antimicrobial Resistance among Beta-Hemolytic Streptococcus in Brazil: An Overview vol.10, pp.8, 2020, https://doi.org/10.3390/antibiotics10080973
  4. Antibacterial Activity of Ikarugamycin against Intracellular Staphylococcus aureus in Bovine Mammary Epithelial Cells In Vitro Infection Model vol.10, pp.10, 2020, https://doi.org/10.3390/biology10100958
  5. Bacterial pathogens associated with clinical and subclinical mastitis in a Mediterranean pasture-based dairy production system of Australia vol.141, 2020, https://doi.org/10.1016/j.rvsc.2021.10.005
  6. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle vol.8, pp.12, 2020, https://doi.org/10.3390/vetsci8120329
  7. A meta‐analysis of the global prevalence of methicillin‐resistant Staphylococcus aureus (MRSA) isolated from clinical and subclinical bovine mastitis vol.132, pp.1, 2020, https://doi.org/10.1111/jam.15192
  8. Minimum inhibitory concentrations of chlorhexidine- and lactic acid-based teat disinfectants: An intervention trial assessing bacterial selection and susceptibility vol.105, pp.1, 2022, https://doi.org/10.3168/jds.2021-20824