DOI QR코드

DOI QR Code

Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers

  • Roh, Hee-Jong (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Kim, Seung-Chang (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Cho, Chang-Yeon (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Lee, Jinwook (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Jeon, Dayeon (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Kim, Dong-kyo (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Kim, Kwan-Woo (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Afrin, Fahmida (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Ko, Yeoung-Gyu (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Lee, Jun-Heon (Division of Animal and Dairy Science, Chungnam National University) ;
  • Batsaikhan, Solongo (Production and technology, National Centre for Livestock Genebank) ;
  • Susanti, Triana (Indonesia Research Institute for Animal Production) ;
  • Hegay, Sergey (Institute of Biochemistry & Physiology, National Academy of Science of Kyrgyzstan) ;
  • Kongvongxay, Siton (Livestock Research Centre) ;
  • Gorkhali, Neena Amatya (Animal Breeding Division, Nepal Agricultural Research Council) ;
  • Thi, Lan Anh Nguyen (Department of Animal Breeding and Genetics, Institute of Animal Sciences for Southern Vietnam) ;
  • Thao, Trinh Thi Thu (Department of Animal Breeding and Genetics, Institute of Animal Sciences for Southern Vietnam) ;
  • Manikku, Lakmalie (Department of Animal Production and Health, Veterinary Research Institute)
  • Received : 2019.12.16
  • Accepted : 2020.04.03
  • Published : 2020.12.01

Abstract

Objective: Estimating the genetic diversity and structures, both within and among chicken breeds, is critical for the identification and conservation of valuable genetic resources. In chickens, microsatellite (MS) marker polymorphisms have previously been widely used to evaluate these distinctions. Our objective was to analyze the genetic diversity and relationships among 22 chicken breeds in Asia based on allelic frequencies. Methods: We used 469 genomic DNA samples from 22 chicken breeds from eight Asian countries (South Korea, KNG, KNB, KNR, KNW, KNY, KNO; Laos, LYO, LCH, LBB, LOU; Indonesia, INK, INS, ING; Vietnam, VTN, VNH; Mongolia, MGN; Kyrgyzstan, KGPS; Nepal, NPS; Sri Lanka, SBC) and three imported breeds (RIR, Rhode Island Red; WLG, White Leghorn; CON, Cornish). Their genetic diversity and phylogenetic relationships were analyzed using 20 MS markers. Results: In total, 193 alleles were observed across all 20 MS markers, and the number of alleles ranged from 3 (MCW0103) to 20 (LEI0192) with a mean of 9.7 overall. The NPS breed had the highest expected heterozygosity (Hexp, 0.718±0.027) and polymorphism information content (PIC, 0.663±0.030). Additionally, the observed heterozygosity (Hobs) was highest in LCH (0.690±0.039), whereas WLG showed the lowest Hexp (0.372±0.055), Hobs (0.384±0.019), and PIC (0.325±0.049). Nei's DA genetic distance was the closest between VTN and VNH (0.086), and farthest between KNG and MGN (0.503). Principal coordinate analysis showed similar results to the phylogenetic analysis, and three axes explained 56.2% of the variance (axis 1, 19.17%; 2, 18.92%; 3, 18.11%). STRUCTURE analysis revealed that the 22 chicken breeds should be divided into 20 clusters, based on the highest ΔK value (46.92). Conclusion: This study provides a basis for future genetic variation studies and the development of conservation strategies for 22 chicken breeds in Asia.

Keywords

References

  1. FAO. Global plan of action for animal genetic resources and the Interlaken declaration. Rome, Italy: International Technical Conference on Animal Genetic Resources for Food and Agriculture; 2007.
  2. About the Nagoya Protocol [internet]. Convention on biological diversity; c2015 [cited 2019 Dec 16]. Available from: https://www.cbd.int/abs/about/
  3. Ajmone-Marsan P, Garcia JF, Lenstra JA. On the origin of cattle: how aurochs became cattle and colonized the world. Evol Anthropol 2010;19:148-57. https://doi.org/10.1002/ evan.20267
  4. Felius M, Theunissen B, Lenstra JA. Conservation of cattle genetic resources: the role of breeds. J Agric Sci 2015;153: 152-62. https://doi.org/10.1017/S0021859614000124
  5. Scherf BD, Pilling D. The second report on the state of the world's animal genetic resources for food and agriculture. Rome Italy: FAO Commission on Genetic Resources for Food and Agriculture Assessments; 2015.
  6. Biscarini F, Nicolazzi EL, Stella A, Boettcher PJ, Gandini G. Challenges and opportunities in genetic improvement of local livestock breeds. Front Genet 2015;6:33. https://doi.org/10.3389/fgene.2015.00033
  7. Rischkowsky B, Pilling D. The state of the world's animal genetic resources for food and agriculture. Rome, Italy: FAO; 2007.
  8. Kaya M, Yildiz MA. Genetic diversity among Turkish native chickens, Denizli and Gerze, estimated by microsatellite markers. Biochem Genet 2008;46:480-91. https://doi.org/10.1007/s10528-008-9164-8
  9. Medugorac I, Medugorac A, Russ I, et al. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Mol Ecol 2009;18:3394-410. https://doi.org/10.1111/j.1365-294X.2009.04286.x
  10. Groeneveld LF, Lenstra JA, Eding H, et al. Genetic diversity in farm animals-a review. Anim Genet 2010;41:6-31. https:// doi.org/10.1111/j.1365-2052.2010.02038.x
  11. Lenstra JA, Groeneveld LF, Eding H, et al. Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim Genet 2012;43:483-502. https://doi.org/10.1111/j.1365-2052.2011.02309.x
  12. Dawson DA, Ball AD, Spurgin LG, et al. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genomics 2013; 14:176. https://doi.org/10.1186/1471-2164-14-176
  13. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 1994;368:455-7. https://doi.org/10.1038/368455a0
  14. Cheng HH, Crittenden LB. Microsatellite markers for genetic mapping in the chicken. Poult Sci 1994;73:539-46. https://doi.org/10.3382/ps.0730539
  15. Hillel J, Groenen MAM, Tixier-Boichard M, et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol 2003;35:533. https://doi.org/10.1186/1297-9686-35-6-533
  16. Abdul-Muneer PM. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014;2014:Article ID 691759. https://doi.org/10.1155/2014/691759
  17. Bakoume C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N. Genetic diversity of the world's largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet Resour Crop Evol 2015;62:349-60. https://doi.org/10.1007/s10722-014-0156-8
  18. El-Esawi MA, Germaine K, Bourke P, Malone R. Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. C R Biol 2016;339:133-40. https://doi.org/10.1016/j.crvi.2016.02.002
  19. Cuc NTK, Simianer H, Eding H, et al. Assessing genetic diversity of Vietnamese local chicken breeds using microsatellites. Anim Genet 2010;41:545-7. https://doi.org/10.1111/j.1365-2052.2010.02039.x
  20. Dorji N, Duangjinda M, Phasuk Y. Genetic characterization of Bhutanese native chickens based on an analysis of Red Junglefowl (Gallus gallus gallus and Gallus gallus spadecieus), domestic Southeast Asian and commercial chicken lines (Gallus gallus domesticus). Genet Mol Biol 2012;35:603-9. https://doi.org/10.1590/S1415-47572012005000039
  21. Seo JH, Lee JH, Kong HS. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers. Asian-Australas J Anim Sci 2017;30:1365-71. https://doi.org/10.5713/ajas.16.0514
  22. Fathi M, El-Zarei M, Al-Homidan I, Abou-Emera O. Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers. Asian-Australas J Anim Sci 2018;31:1871-80. https://doi.org/10.5713/ajas.18.0041
  23. Park S. Microsatellite Toolkit for MS Excel 97 or 2000, Dublin, Ireland: Molecular Population Genetics Lab, Smurfit Institute of Genetics, Trinity College; 2000.
  24. Ota T. DISPAN: genetic distance and phylogenetic analysis. University Park, PA, USA: Pennsylvania State University; 1993.
  25. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5 c: Joseph Felsenstein; 1993.
  26. Page RDM. Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics 1996;12:357-8. https://doi.org/10.1093/bioinformatics/12.4.357
  27. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155: 945-59. https://doi.org/10.1093/genetics/155.2.945
  28. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012;4: 359-61. https://doi.org/10.1007/s12686-011-9548-7
  29. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005;14:2611-20. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  30. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007;23:1801-6. https://doi.org/10.1093/ bioinformatics/btm233
  31. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 2004;4:137-8. https://doi.org/10.1046/j.1471-8286.2003.00566.x
  32. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008;24:1403-5. https://doi.org/10.1093/bioinformatics/btn129
  33. Allaire J. RStudio: integrated development environment for R. Boston, MA, USA: RStudio, Inc.; 2012. 770 p.
  34. Zanetti E, De Marchi M, Dalvit C, Cassandro M. Genetic characterization of local Italian breeds of chickens undergoing in situ conservation. Poult Sci 2010;89:420-7. https://doi.org/10.3382/ps.2009-00324
  35. Suh S, Sharma A, Lee S, et al. Genetic diversity and relationships of Korean chicken breeds based on 30 microsatellite markers. Asian-Australas J Anim Sci 2014;27:1399-405. https://doi.org/10.5713/ajas.2014.14016
  36. Mahammi FZ, Gaouar SBS, Laloe D, et al. A molecular analysis of the patterns of genetic diversity in local chickens from western Algeria in comparison with commercial lines and wild jungle fowls. J Anim Breed Genet 2016;133:59-70. https://doi.org/10.1111/jbg.12151
  37. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980;32:314-31.
  38. Seo SW. Molecular genetic evaluation of Korean domestic animal genetic resources using microsatellite markers [dissertation]. Jinju, Korea: Gyeongsang National University; 2014.
  39. Leroy G, Verrier E, Meriaux JC, Rognon X. Genetic diversity of dog breeds: between-breed diversity, breed assignation and conservation approaches. Anim Genet 2009;40:333-43. https://doi.org/10.1111/j.1365-2052.2008.01843.x