DOI QR코드

DOI QR Code

Free vibration analysis of plates with steps and internal line supports by using a modified matched interface and boundary method

  • Song, Zhiwei (School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology) ;
  • He, Xiaoqiao (Department of Architecture and Civil Engineering, City University of Hong Kong) ;
  • Li, Wei (School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology) ;
  • Xie, De (School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology)
  • 투고 : 2019.11.15
  • 심사 : 2020.02.10
  • 발행 : 2020.10.25

초록

This paper deals with free vibration of plates with steps and internal line supports by using a modified matched interface and boundary (MMIB) method. Different kinds of interfaces caused by steps, rigid and elastic line supports and their combinations are taken into account. Detailed MMIB procedures for dealing with these different interfaces are presented. Various examples are chosen to illustrate the accuracy and convergence of MMIB method. Numerical results show that the proposed MMIB is a highly accurate and convergent approach for solving the title issue. This study will extend the application range of MMIB method.

키워드

참고문헌

  1. Chai, Y.B., Gong, Z.X. and Li, W. and Zhang, Q. (2017), "A smoothed finite element method for exterior Helmholtz equation in two dimensions", Eng. Anal. Bound. Elem., 84, 237-252. https://doi.org/10.1016/j.enganabound.2017.09.006.
  2. Cheung, Y.K., Au, F. T.K. and Zheng, D.Y. (2000), "Finite strip method for the free vibration and buckling analysis of plates with abrupt changes in thickness and complex support conditions", Thin. Wall. Struct., 36, 89-110. https://doi.org/10.1016/S0263-8231(99)00044-0.
  3. Cheung, Y. K. and Zhou, D. (2000), "Vibrations of rectangular plates with elastic intermediate line -supports and edge constraints", Thin. Wall. Struct., 37, 305-331. https://doi.org/10.1016/S0263-8231(00)00015-X.
  4. Duan, G. H. and Wang, X. W. (2013), "Free vibration analysis of multiple-stepped beams by the discrete singular convolution", Appl. Math. Comput., 219, 11096-11109. https://doi.org/10.1016/j.amc.2013.05.023.
  5. Duan, G.H. and Wang, X.W. (2014), "Vibration analysis of stepped rectangular plates by the discrete singular convolution algorithm", Int. J. Mech. Sci., 82, 100-109. https://doi.org/10.1016/j.ijmecsci.2014.03.004.
  6. Duan, G.H., Wang, X.W. and Jin, C.H. (2014), "Free vibration analysis of circular thin plates with stepped thickness by the DSC element method", Thin Wall. Struct., 85, 25-33. https://doi.org/10.1016/j.tws.2014.07.010.
  7. Fornberg, B. (1998), "Calculation of weights in finite difference formulas", SIAM Rev., 40, 685-691. https://doi.org/10.1137/S0036144596322507.
  8. Gu, H. and Wang, X.W. (1997), "On the free vibration analysis of circular plates with stepped thickness over a concentric region by the differential quadrature element method", J. Sound Vib., 202(3), 452-459. https://doi.org/10.1006/jsvi.1996.0813.
  9. Khezri, M., Bradford, M.A. and Vrcelj, Z. (2015), "Application of RKP-FSM in the buckling and free vibration analysis of thin plates with abrupt thickness changes and internal supports", Int.J. Numer. Meth. Engng., 104, 125-156. https://doi.org/10.1002/nme.4936.
  10. Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31, 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
  11. Li, Q.S. (2003), "An exact approach for free vibration analysis of rectangular plates with line-concentrated mass and elastic line-support", Int. J. Mech. Sic., 45, 669-685. https://doi.org/10.1016/S0020-7403(03)00110-3.
  12. Li, W., Song, Z.W. and Chai, Y.B. (2015), "Discrete singular convolution method for dynamic stability analysis of beams under periodic axial forces", J. Eng. Mech., 141, 04015033-1-13. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000931.
  13. Li ,W., Song ,Z.W., He ,X.Q. and Xie , D. (2020), "A comparison study of HO-CFD and DSC-RSK for solving some classes of boundary-value and eigenvalue problems", Int. J. Comput. Methods, 17(6), 1950011-1-47. https://doi.org/10.1142/S0219876219500117.
  14. Liu, F.L. and Liew, K.M. (1999), "Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities", Comput. Methods Appl. Mech. Eng., 179, 407-423. https://doi.org/10.1016/S0045-7825(99)00049-3.
  15. Lu, C.F., Lee, Y.Y., Lim, C.W. and Chen, W.Q. (2006), "Free vibration of long-span continuous rectangular Kirchhoff plates with internal rigid line supports", J. Sound Vib., 297, 351-364. https://doi.org/10.1016/j.jsv.2006.04.007.
  16. Mizusawa, T., Kajita, T. and Naruoka, M. (1980), "Vibration and buckling analysis of plates of abruptly varying stiffness", Comput. Struct., 12, 689-693. https://doi.org/10.1016/0045-7949(80)90170-4.
  17. Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration of analysis of rectangular plates", Comput. Meth. Appl. Mech. Eng., 193, 2483-2506. https://doi.org/10.1016/j.cma.2004.01.013.
  18. Rajasekaran, S. (2013), "Buckling and vibration of stepped rectangular plates by element -based differential transform method", Civil Struct. Eng., 6(1), 51-64. https://doi.org/10.1080/19373260.2012.732399.
  19. Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer, London, UK.
  20. Singhatanadgid, P. and Taranajetsada, P. (2014), "Vibration analysis of stepped rectangular plates using the extended Kantorovich method", Mech. Adv. Mater. Struct., 23, 201-215. https://doi.org/10.1080/15376494.2014.949922.
  21. Song, Z.W., Chen, Z.G., Li, W. and Chai, Y.B. (2017), "Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method", Meccanica, 52, 1159-1173. https://doi.org/10.1007/s11012-016-0457-4.
  22. Song, Z. W., Li, W., He, X.Q. and Xie, D. (2019), "Free vibration analysis of beams with various interfaces by using a modified matched interface and boundary method", Struct. Eng. Mech., 72(1), 1-17. https://doi.org/10.12989/sem.2019.72.1.001.
  23. Wang, C, and Unal, A. (2013), "Free vibration of stepped thickness rectangular plates using spectral finite element method", J. Sound Vib., 332, 4324-4338. https://doi.org/10.1016/j.jsv.2013.03.008.
  24. Wang, B., Xia, K.L. and Wei, G.W. (2015), "Second order solving 3D elasticity equations with complex interfaces", J. Comput. Phys., 294, 405-438. https://doi.org/10.1016/j.jcp.2015.03.053.
  25. Wei, G. W., Zhao, Y. B. and Xiang, Y. (2002), "A novel approach for the analysis of high-frequency vibrations", J. Sound Vib., 257(2), 207-246. https://doi.org/10.1006/jsvi.2002.5055.
  26. Wu, F., Zeng, W.L., Yao, L.Y. and Liu, G. R. (2018) "A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner-Mindlin plates", Appl. Math. Model., 53, 333-352. https://doi.org/10.1016/j.apm.2017.09.005.
  27. Wu, T. Y. and Liu, G. R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solids Struct., 38, 7967-7980. https://doi.org/10.1016/S0020-7683(01)00077-4.
  28. Wu, T. Y., Wang, Y. Y. and Liu, G. R. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Methods Appl. Mech. Eng., 191, 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2.
  29. Xiang, Y. and Wang, C. M. (2002), "Exact buckling and vibration solutions for stepped rectangular plates", J. Sound Vib., 250(3), 503-517. https://doi.org/10.1006/jsvi.2001.3922.
  30. Xiang, Y., Zhao, Y. B. and Wei, G. W. (2002), "Levy solutions for vibration of multi-span rectangular plates", Int. J. Mech. Sci., 44, 1195-1218. https://doi.org/10.1016/S0020-7403(02)00027-9.
  31. Yu, S. N., Xiang, Y. and Wei, G. W. (2009), "Matched interface and boundary (MIB) method for the vibration analysis of plates", Commun. Numer. Mech. Engng., 25, 923-950. https://doi.org/10.1002/cnm.1130.
  32. Yu, S. N., Zhou, Y. C. and Wei, G. W. (2007), "Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces", J. Comput. Phys., 224, 729-756. https://doi.org/10.1016/j.jcp.2006.10.030.
  33. Zhao, S. and Wei, G. W. (2004), "High order FDTD methods via derivative matching for Maxwell's equations with material interfaces", J. Comput. Phys., 200, 60-103. https://doi.org/10.1016/j.jcp.2004.03.008.
  34. Zhao, S., Wei, G.W. and Xiang, Y. (2005), "DSC analysis of free-edged beams by an iteratively matched boundary method", J. Sound Vib., 284, 487-493. https://doi.org/10.1016/j.jsv.2004.08.037.
  35. Zhao, S. and Wei, G.W. (2009), "Matched interface and boundary (MIB) for the implementation of boundary conditions in high order central finite differences", Int. J. Numer. Meth. Engng., 77, 1690-1730. https://doi.org/10.1002/nme.2473.
  36. Zhou, Y.C. and Wei, G.W. (2006), "On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method", J. Comput. Phys., 219, 228-246. https://doi.org/10.1016/j.jcp.2006.03.027.
  37. Zhou, X. Q., Yu, D. Y. and Shao, X.Y., Wang, S. and Tian, Y.H. (2014), "Band gap characteristics of periodically stiffened - thin-plate based on center finite difference method", Thin. Wall. Struct., 82,115-123. https://doi.org/10.1016/j.tws.2014.04.010.
  38. Zhou, Y.C., Zhao, S., Feig, M. and Wei, G.W. (2006), "High order matched interface and boundary (MIB) schemes for elliptic equations with discontinuous coefficients and singular sources", J. Comput. Phys., 213, 1-30. https://doi.org/10.1016/j.jcp.2005.07.022.
  39. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, New York, USA.