DOI QR코드

DOI QR Code

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Ye, Yicheng (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Wang, Qihu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Liu, Xiaoyun (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Yang, Fan (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Tan, Wenkan (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
  • Received : 2020.02.07
  • Accepted : 2020.06.04
  • Published : 2020.10.25

Abstract

Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

Keywords

References

  1. Ajalloeian, R., Moghaddam, B. and Azimian, A. (2017), "Prediction of rock mass squeezing of T4 tunnel in Iran", Geotech. Geol. Eng., 35(2), 747-763. https://doi.org/10.1007/S10706-016-0139-Y.
  2. Amann, F., Button, E.A., Evans, K.F., Gischig, V.S. and Blumel, M. (2011), "Experimental study of the brittle behavior of clay shale in rapid unconfined compression", Rock Mech. Rock Eng., 44(4), 415-430. https://doi.org/10.1007/s00603-011-0156-3.
  3. Andjelkovic, V., Pavlovic, N., Lazarevic, Z. and Nedovic, V. (2015), "Modelling of shear characteristics at the concrete-rock mass interface", Int. J. Rock Mech. Min. Sci., 76, 222-236. http://dx.doi.org/10.1016/j.ijrmms.2015.03.024.
  4. Antonellini, M., Nannoni, A., Vigna, B. and Waele, J.D. (2019), "Structural control on karst water circulation and speleogenesis in alithological contact zone: The Bossea cave system (Western Alps, Italy)", Geomorphology., 345, 1-21. https://doi.org/10.1016/j.geomorph.2019.07.019.
  5. Atapour, H. and Moosavi, M. (2013), "Some Effects of Shearing Velocity on the Shear Stress-Deformation Behaviour of Hard- Soft Artificial Material Interfaces", Geotech. Geol. Eng., 31(5), 1603-1615. http://dx.doi.org/10.1007/s10706-013-9687-6.
  6. Bahaadini, M., Sharrock, G. and Hebblewhite, B. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115. https://doi.org/10.1016/j.compgeo.2013.02.003.
  7. Bista, D., Sas, G., Johansson, F. and Lia, L. (2020), "Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2020.01.001.
  8. Cawood, A.J. and Bond, C.E. (2018), "3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning", J. Struct. Geol., 106, 54-69. https://doi.org/10.1016/j.jsg.2017.11.011.
  9. Champagne, K., Rivard, P. and Quirion, M. (2013), "Parametres de resistance au cisaillement associes aux discontinuites des barrages en beton du Quebec", Annual Conference of Canadian Dam Association, Montreal, Quebec, Canada.
  10. Douma, L.A.N.R., Regelink, J.A., Bertotti, G., Boersma, Q.D. and Barnhoorn, A. (2019), "The mechanical contrast between layers controls fracture containment in layered rocks", J. Struct. Geolo., 127, 1-11. https://doi.org/10.1016/j.jsg.2019.06.015.
  11. Feng, W.K., Huang, R.Q. and Li, T.B. (2012), "Deformation analysis of a soft-hard rock contact zone surrounding a tunnel", Tunn. Undergr. Sp. Technol., 32, 190-197. http://dx.doi.org/10.1016/j.tust.2012.06.011.
  12. Ghazvinian, A.H., Taghichian, A., Hashemi, M. and Mar'ashi, S.A. (2010), "The shear behavior of bedding planes of weakness between two different rock types with high strength difference", Rock Mech. Rock Eng., 43(1), 69-87. http://dx.doi.org/10.1007/s00603-009-0030-8.
  13. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/SEM.2018.68.4.507.
  14. Haeri, H., Sarfarazi, V., Zhu, Z., Hokmabadi, N. N., Moshrefifar, M. and Hedayat, A. (2019), "Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/SEM.2019.69.2.221.
  15. Hu, B., Yang, S.Q., Xu, P. and Cheng, J.L. (2019), "Cyclic loading-unloading creep behavior of composite layered specimens", Acta Geophys., 67(2), 449-464. https://doi.org/10.1007/s11600-019-00261-x.
  16. Huang, C.C., Yang, W.D., Duan, K., Fang L.D., Wang L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
  17. Khazaei, C., Hazzard, J. and Chalaturnyk, R. (2015), "Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling", Comput. Geotech., 67, 94-102. https://doi.org/10.1016/j.compgeo.2015.02.012.
  18. Koupouli, N.J.F., Belem, T., Rivard, P. and Effenguet, H. (2016), "Direct shear tests on cemented paste backfill-rock wall and cemented paste backfill-backfill interfaces", J. Rock Mech. Geotech. Eng., 8(4), 472-479. http://dx.doi.org/10.1016/j.jrmge.2016.02.001.
  19. Krounis, A., Johansson, F. and Larsson, S. (2015), "Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability", J. Rock Mech. Geotech. Eng., 7(6), 659-667. http://dx.doi.org/10.1016/j.jrmge.2015.08.005.
  20. Krounis, A., Johansson, F. and Larsson, S. (2016), "Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses", Rock Mech. Rock Eng., 49(7), 2711-2722. https://doi.org/10.1007/s00603-016-0962-8.
  21. Li, W.F., Bai, J.B., Cheng, J.Y., Peng, S. and Liu, H.L. (2015), "Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load", Int. J. Rock Mech. Min. Sci., 77, 60-67. http://dx.doi.org/10.1016/j.ijrmms.2015.03.033.
  22. Lee, J.S., Han, W., Kim, S.Y. and Byun, Y.H. (2020), "Shear strength and interface friction characteristics of expandable foam grout", Constr. Build. Mater., 249, 1-10. https://doi.org/10.1016/j.conbuildmat.2020.118719.
  23. Moradian, Z.A., Ballivy, G. and Rivard, P. (2012), "Application of acoustic emission for monitoring shear behavior of bonded concrete-rock joints under direct shear test", Can. J. Civ. Eng., 39(8), 887-896. https://doi.org/10.1139/L2012-073.
  24. Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emissions", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004.
  25. Mouzannar, H., Bost, M., Leroux, M. and Virely, D. (2017), "Experimental study of the shear strength of bonded concrete- rock interfaces: surface morphology and scale effect", Rock Mech. Rock Eng., 50(10), 2601-2625. https://doi.org/10.1007/s00603-017-1259-2.
  26. Muller, C., Fruhwirt, T., Haase, D., Schlegel, R. and Konietzky, Heinz. (2018), "Modeling deformation and damage of rock salt using the discrete element method", Int. J. Rock Mech. Min. Sci., 103, 230-241. https://doi.org/10.1016/j.ijrmms.2018.01.022.
  27. Panda, M.K., Mohanty, S., Pingua, B.M.P. and Mishra, A.K. (2014), "Engineering geological and geotechnical investigations along the head race tunnel in Teesta Stage-III hydroelectric project, India", Eng. Geol., 181, 297-308. http://dx.doi.org/10.1016/j.enggeo.2014.08.022.
  28. Pirzada, M.A., Roshan, H., Sun, H., Oh, J., Andersen, M.S., Hedayat, A. and Bahaaddini, M. (2020), "Effect of contact surface area on frictional behaviour of dry and saturated rock joints", J. Struct. Geol., 135, 1-12. https://doi.org/10.1016/j.jsg.2020.104044.
  29. Renaud, S., Bouaanani, N. and Miquel, B. (2016), "Critical appraisal of common simplified assumptions in seismic stability analyses of gravity dams", J. Perform. Constr. Facil., 30(5), 04016017. http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000843.
  30. Renaud, S., Saichi, T., Bouaanani, N., Miquel, B., Quirion, M. and Rivard, P. (2019), "Roughness effects on the shear strength of concrete and rock joints in dams based on experimental data", Rock Mech. Rock Eng., 52(10), 3867-3888. https://doi.org/10.1007/s00603-019-01803-x.
  31. Saiang, D., Malmgren, L. and Nordlund, E. (2005), "Laboratory tests on shotcrete-rock joints in direct shear, tension and compression", Rock Mech. Rock Eng., 38(4), 275-297. http://dx.doi.org/10.1007/s00603-005-0055-6.
  32. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concr., 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723.
  33. Shen, Y.J., Wang, Y.Z., Yang, Y., Sun, Q., Luo, T. and Zhang, H. (2019), "Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface", Constr. Build. Mater., 213, 156-166. https://doi.org/10.1016/j.conbuildmat.2019.04.078.
  34. Tian, H.M., Chen, W.Z., Yang, D.S. and Yang, J.P. (2015), "Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints", Rock Mech. Rock Eng., 48(1), 213-222. https://doi.org/0.1007/s00603-014-0560-6. https://doi.org/10.1007/s00603-014-0560-6
  35. Tian, Y.C., Liu, Q.S., Ma, H., Liu, Q. and Deng, P.H. (2018), "New peak shear strength model for cement filled rock joints", Eng. Geol., 233, 269-280. https://doi.org/10.1016/j.enggeo.2017.12.021.
  36. Wang, W.Q., Ye, Y.C., Wang, Q.H., Liu, X.Y., Yuan, Z.H. and Li, P.C. (2020), "Effects of differences in mechanical parameters of media on mechanical properties and failure form of composite samples", KSCE. J. Civ. Eng., 24(2), 424-434. https://doi.org/10.1007/s12205-020-1021-2.
  37. Wang, W.Q., Ye, Y.C., Wang, Q.H., Luo, B.Y., Wang, J. and Liu, Y. (2020), "Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies", Geomech. Eng., 21(6), 571-582. https://doi.org/10.12989/gae.2020.21.6.571.
  38. Wu, Q., Xu, Y.J., Tang, H.M., Fang, K., Jiang, Y.F., Liu, C.Y., Wang, L.Q., Wang, X.H. and Kang, J.T. (2018), "Investigation on the shear properties of discontinuities at the interface between different rock types in the Badong formation, China", Eng. Geol., 245, 280-291. https://doi.org/10.1016/j.enggeo.2018.09.002.
  39. Xia, L., Zeng, Y.W., Luo, R. and Liu, W. (2018), "Influence of bedding planes on the mechanical characteristics and fracture pattern of transversely isotropic rocks in direct shear tests", Shock Vib., 2018, 1-14. https://doi.org/10.1155/2018/6479031.
  40. Xing, Y., Kulatilake, P.H.S.W. and Sandbak, L.A. (2019), "Stability Assessment and Support Design for Underground Tunnels Located in Complex Geologies and Subjected to Engineering Activities: Case Study", Int. J. Geomech., 19(5), 1-9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001402.
  41. Yang, S.Q., Tao, Y., Xu, P. and Chen, M. (2019), "Large-scale model experiment and numerical simulation on convergence deformation of tunnel excavating in composite strata", Tunn. Undergr. Sp. Technol., 94, 1-18. https://doi.org/10.1016/j.tust.2019.103133.
  42. Yassaghi, A. and Salari-Rad, H. (2005), "Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study", Int. J. Rock Mech. Min. Sci., 42(1), 95-108. https://doi.org/10.1016/j.ijrmms.2004.07.002.
  43. Liu, Y., Ye, Y.C., Wang, Q.H. and Wang, W.Q. (2020), "Experimental Research on Shear Failure Monitoring of Composite Rocks Using Piezoelectric Active Sensing Approach", Sensors., 20(5), 1-17. http://dx.doi.org/10.3390/s20051376.
  44. Zhang, Q.Y., Ren, M.Y., Duan, K., Wang, W.S., Gao, Q., Lin, H.X., Xiang, W. and Jiao, Y.Y. (2019), "Geo-mechanical model test on the collaborative bearing effect of rock-support system for deep tunnel in complicated rock strata", Tunn. Undergr. Sp. Technol., 91, 103001. https://doi.org/10.1016/j.tust.2019.103001.
  45. Zhao, W.S., Chen, W.Z. and Zhao, K. (2018), "Laboratory test on foamed concrete-rock joints in direct shear", Constr. Build. Mater., 173, 69-80. https://doi.org/10.1016/j.conbuildmat.2018.04.006.