References
- Bayati, I., Belloli, M., Bernini, L. and Zasso, A. (2017), "Aerodynamic design methodology for wind tunnel tests of wind turbine rotors", J. Wind Eng. Ind. Aerod., 167, 217-227. https://doi.org/10.1016/j.jweia.2017.05.004.
- Dou, B., Guala, M., Lei, L. and Zeng, P. (2019), "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel", Energy, 166, 819-833. https://doi.org/10.1016/j.jweia.2017.05.004.
- Horcas, S.G., Debrabandere, F., Tartinville, B., Hirsch, C. and Coussement, G. (2017), "Extension of the Non-Linear Harmonic method for the study of the dynamic aeroelasticity of horizontal axis wind turbines", J. Fluids Struct., 73, 100-124. https://doi.org/10.1016/j.jfluidstructs.2017.06.008.
- Houigab, J., Seungho, L. and Soon-Duck, K. (2018), "Blockage corrections for wind tunnel tests conducted on a Darrieus wind turbine", J. Wind Eng. Ind. Aerod., 179, 229-239. https://doi.org/10.1016/j.jweia.2018.06.002.
- Jiang, S. and Duan, S. (2016), "A multibody dynamics approach for vibration analysis of horizontal axis wind turbine blades", ASME 2016 International Mechanical Engineering Congress and Exposition, Arizona.
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development", Golden, CO: National Renewable Energy Laboratory.
- Ke, S. T., Xu, L. and Ge, Y. J. (2017), "The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position", Wind Struct., 25(6), 507-535. https://doi.org/10.12989/was.2017.25.6.507.
- Lee, D., Hodges, D. and Patil, M. (2002), "Multi-flexible-body dynamic analysis of horizontal axis wind turbines", Wind Energy, 5(4), 281-300. https://doi.org/10.1002/we.66.
- Li, D., Mo, W., Yan, X. and Zhang, X. (2014), "Aeroelastic analysis of horizontal axis wind turbine based on multi-body model", J. Mech. Eng., 50(12), 140-150. https://doi.org/10.3901/JME.2014.12.140.
- Li, Y., Castro, A.M., Sinokrot, T., Prescott, W. and Carrica, P.M. (2015), "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence", Renew. Energy. 76, 338-361. https://doi.org/10.1016/j.renene.2014.11.014.
- Li, Y., Tang, Y., Zhu, Q., Qu, X., Wang, B. and Zhang, R. (2017), "Effects of second-order wave forces and aerodynamic forces on dynamic responses of a TLP-type floating offshore wind turbine considering the set-down motion", J. Renew. Sustain. Energy, 9(6), 063302. https://doi.org/10.1063/1.5007893.
- Mo, W., Li, D., Xia, H. and Lv, W. (2013), "Multibody dynamic modeling and dynamic characteristics analysis of flexible blades for a horizontal axis wind turbine", J. Vib. Shock, 32(22), 99-105. https://doi.org/10.13465/j.cnki.jvs.2013.22.035.
- Ozbay, A., Tian, W., Hu, H. (2016), "Experimental investigation on the wake characteristics and aeromechanics of dual-rotor wind turbines", J. Eng. Gas Turbines Power-Transactions ASME, 138(4), 042602. https://doi.org/10.1115/1.4031476.
- Rasmussen, F., Hansen, M.H., Thomsen, K., Larsen, T.J., Bertagnolio, F., Johansen, J. and Hansen, A.M. (2003), "Present status of aeroelasticity of wind turbines", Wind Energy: Int. J. Progress Application Wind Power Conversion Technology, 6(3), 213-228. https://doi.org/10.1002/we.98.
- Toshimitsu, K., Narihara, T., Kikugawa, H., Akiyoshi, A. and Kawazu, Y. (2017), "Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel", J. Thermal Sci., 26(2), 113-118. https://doi.org/10.1007/s11630-017-0918-7.
- Wang, F. (2004), "Computational fluid dynamics analysis-principle and application of CFD software", Tsinghua University Press, Beijing, in Chinese.
- Wang, P., Zhao, M., Da, X., Liu, J. and Xu, C. (2018), "Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay", Soil Dyn. Earthq. Eng., 113, 47-57. https://doi.org/10.1016/j.soildyn.2018.04.028.
- Ye, K. and Ji, J. (2019), "Current, wave, wind and interaction induced dynamic response of a 5MW spar-type offshore direct-drive wind turbine", Eng. Struct., 178, 395-409. https://doi.org/10.1016/j.engstruct.2018.10.023.
- Zhang, F. and He, R. (2014), "Natural frequency analysis of wind turbines based on flexible multi-body dynamics", Proceedings of the CSEE, 34(11), 1807-1814. https://doi.org/10.13334/j.0258-8013.pcsee.2014.11.012.
- Zhang, J., Chen, W., Zhou T., Wu H., Hu D. and Ren J. (2016), "Analysis of dynamic stability for wind turbine blade under fluid-structure interaction", J. Vibroeng., 18(2), 1175-1186.
- Zhang, J., Guo, L., Wu, H., Zhou, A., Hu, D. and Ren, J. (2014), "The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction", Ocean Eng., 84(4), 14-19. https://doi.org/10.1016/j.oceaneng.2014.03.017.
- Zhao, X., MaiBer, P. and Wu, J. (2007), "A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element", Renew. Energy, 32(3), 532-546. https://doi.org/10.1016/j.renene.2006.04.010.