References
- Balkissoon, S., Fox, N. and Lupo, A. (2020), "Fractal characteristics of tall tower wind speeds in Missouri". Renew. Energy, 154, 1346-1356. https://doi.org/10.1016/j.renene.2020.03.021.
- Barbounis, T.G. and Theocharis, J.B. (2007), "Locally recurrent neural networks for wind speed prediction using spatial correlation", Information Sci., 177(24), 5775-5797. https://doi.org/10.1016/j.ins.2007.05.024.
- Bendat, J.S. and Piersol, A.G. (2011), Random Data: Analysis and Measurement Procedures (Vol. 729). John Wiley & Sons.
- Bilgili, M., Sahin, B. and Yasar, A. (2007), "Application of artificial neural networks for the wind speed prediction of target station using reference stations data", Renew. Energy, 32(14), 2350-2360. https://doi.org/10.1016/j.renene.2006.12.001.
- Breslin, M.C. and Belward, J.A. (1999), "Fractal dimensions for rainfall time series", Mathem. Comput. Simulat., 48(4-6), 437-446. https://doi.org/10.1016/S0378-4754(99)00023-3.
- Cadenas, E. and Rivera, W. (2009), "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks", Renew. Energy, 34(1), 274-278. https://doi.org/10.1016/j.renene.2008.03.014.
- Cadenas, E. and Rivera, W. (2010), "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model", Renew. Energy, 35(12), 2732-2738. https://doi.org/10.1016/j.renene.2010.04.022.
- Cadenas, E., Campos‐Amezcua, R., Rivera, W., Espinosa‐Medina, M.A., Mendez‐Gordillo, A.R., Rangel, E. and Tena, J. (2019), "Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis", Energy Sci. Eng., 7(2), 361-378. https://doi.org/10.1002/ese3.277.
- Catalao, J.P.D.S., Pousinho, H.M.I. and Mendes, V.M.F. (2011), "Short-term wind power forecasting in Portugal by neural networks and wavelet transform", Renew. Energy, 36(4), 1245-1251. https://doi.org/10.1016/j.renene.2010.09.016.
- Chang, T.P., Ko, H.H., Liu, F.J., Chen, P.H., Chang, Y.P., Liang, Y.H. and Chen, Y.H. (2012), "Fractal dimension of wind speed time series", Appl. Energy, 93, 742-749. https://doi.org/10.1016/j.apenergy.2011.08.014.
- Damousis, I.G., Alexiadis, M.C., Theocharis, J.B. and Dokopoulos, P.S. (2004), "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation", IEEE Transactions Energy Converse, 19(2), 352-361. https://doi.org/10.1109/TEC.2003.821865.
- Dauji, S., Deo, M.C. and Bhargava, K. (2015), "Prediction of ocean currents with artificial neural networks", ISH J. Hydraulic Eng., 21(1), 14-27. https://doi.org/10.1080/09715010.2014.938133.
- El-Fouly, T.H.M., El-Saadany, E.F. and Salama, M.M.A. (2006), June), "One day ahead prediction of wind speed using annual trends", In 2006 IEEE Power Engineering Society General Meeting (pp. 7-pp). IEEE.
- Erdem, E. and Shi, J. (2011), "ARMA based approaches for forecasting the tuple of wind speed and direction", Appl. Energy, 88(4), 1405-1414. https://doi.org/10.1016/j.apenergy.2010.10.031.
- Esteban, M.D., Diez, J.J., Lopez, J.S. and Negro, V. (2011), "Why offshore wind energy?" Renew. Energy, 36(2), 444-450. https://doi.org/10.1016/j.renene.2010.07.009.
- Focken, U., Lange, M., Monnich, K., Waldl, H.P., Beyer, H.G. and Luig, A. (2002), "Short-term prediction of the aggregated power output of wind farms-a statistical analysis of the reduction of the prediction error by spatial smoothing effects", J. Wind Eng. Ind. Aerod., 90(3), 231-246. https://doi.org/10.1016/S0167-6105(01)00222-7.
- Fortuna, L., Nunnari, S. and Guariso, G. (2014), "Fractal order evidences in wind speed time series", In ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014 (pp. 1-6). IEEE.
- Harrouni, S. (2016). "Long term persistence in daily wind speed series using fractal dimension", Int. J. Multiphysics, 7(2). https://doi.org/10.1260/1750-9548.7.2.87.
- Harrouni, S. and Guessoum, A. (2009), "Using fractal dimension to quantify long-range persistence in global solar radiation", Chaos, Solitons Fractals, 41(3), 1520-1530. https://doi.org/10.1016/j.chaos.2008.06.016.
- He, Y.C., Chan, P.W. and Li, Q.S. (2013), "Wind characteristics over different terrains", J. Wind Eng. Ind. Aerod., 120, 51-69. https://doi.org/10.1016/j.jweia.2013.06.016 .
- He, Y.C., Shu, Z.R., Li, Q.S. and Chan, P.W. (2020), "Standardization of marine surface wind speeds at coastal islands", Ocean Eng., 213, 107652. https://doi.org/10.1016/j.oceaneng.2020.107652.
- Kani, S.P. and Ardehali, M.M. (2011), "Very short-term wind speed prediction: A new artificial neural network-Markov chain model", Energy Converse. Manage., 52(1), 738-745. https://doi.org/10.1016/j.enconman.2010.07.053.
- Kavasseri, R.G. and Nagarajan, R. (2005), "A multifractal description of wind speed records", Chaos, Solitons Fractals, 24(1), 165-173. https://doi.org/10.1016/j.chaos.2004.09.004.
- Kavasseri, R.G. and Seetharaman, K. (2009), "Day-ahead wind speed forecasting using f-ARIMA models", Renew. Energy, 34(5), 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006.
- Kocak, K. (2009), "Examination of persistence properties of wind speed records using detrended fluctuation analysis", Energy, 34(11), 1980-1985. https://doi.org/10.1016/j.energy.2009.08.006.
- Launiainen, J. and Laurila, T. (1984), "Marine wind characteristics in the northern Baltic Sea", Finnish Marine Res., 250, 52-86.
- Lei, M., Shiyan, L., Chuanwen, J., Hongling, L. and Yan, Z. (2009), "A review on the forecasting of wind speed and generated power", Renew. Sustain. Energy Rev., 13(4), 915-920. https://doi.org/10.1016/j.rser.2008.02.002.
- Li, G. and Shi, J. (2010), "On comparing three artificial neural networks for wind speed forecasting", Appl. Energy, 87(7), 2313-2320. https://doi.org/10.1016/j.apenergy.2009.12.013.
- Liu, H., Erdem, E. and Shi, J. (2011), "Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed", Appl. Energy, 88(3), 724-732. https://doi.org/10.1016/j.apenergy.2010.09.028.
- Liu, H., Tian, H.Q. and Li, Y.F. (2012), "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction", Appl. Energy, 98, 415-424. https://doi.org/10.1016/j.apenergy.2012.04.001.
- Mandelbrot, B. (1983). The Fractal Geometry of Nature, WH Freeman, New York.
- Mandelbrot, B. (1994), Fractals-A Geometry Of Nature. Exploring Chaos. New York: Norton, 122-135.
- Nikolic, V., Mitic, V.V., Kocic, L. and Petkovic, D. (2017), "Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique", Knowledge Information Syst., 52(1), 255-265. https://doi.org/10.1007/s10115-016-1006-0.
- Petkovic, D., Nikolic, V., Mitic, V.V. and Kocic, L. (2017), "Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms", Flow Measurem. Instrument., 54, 172-176. https://doi.org/10.1016/j.flowmeasinst.2017.01.007.
- Rehman, S. and Siddiqi, A.H. (2009), "Wavelet based Hurst exponent and fractal dimensional analysis of Saudi climatic dynamics", Chaos, Solitons Fractals, 40(3), 1081-1090. https://doi.org/10.1016/j.chaos.2007.08.063.
- Rubalcaba, J.O. (1997), "Fractal analysis of climatic data: annual precipitation records in Spain", Theoretical Appl. Climatology, 56(1-2), 83-87. https://doi.org/10.1007/BF00863785.
- Sakamoto, T., Tanizuka, N., Hirata, Y. and Aihara, K. (2007), "A fractal dimension of wind speed time series", In AIP Conference Proceedings AIP.
- Sfetsos, A. (2000), "A comparison of various forecasting techniques applied to mean hourly wind speed time series". Renew. Energy, 21(1), 23-35. https://doi.org/10.1016/S0960-1481(99)00125-1.
- Shu, Z.R., Li, Q.S. and Chan, P.W. (2015a), "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function", Appl. Energy, 156, 362-373. https://doi.org/10.1016/j.apenergy.2015.07.027.
- Shu, Z.R., Li, Q.S. and Chan, P.W. (2015b), "Statistical analysis of wind characteristics and wind energy potential in Hong Kong", Energy Conversion Management, 101, 644-657. https://doi.org/10.1016/j.enconman.2015.05.070.
- Shu, Z.R., Li, Q.S., Chan, P.W. and He, Y.C. (2020), "Seasonal and diurnal variation of marine wind characteristics based on lidar measurements", Meteorolog. Appl., 27(3), e1918. https://doi.org/10.1002/met.1918.
- Shu, Z.R., Li, Q.S., He, Y.C. and Chan, P.W. (2015c), "Gust factors for tropical cyclone, monsoon and thunderstorm winds", Wind Eng. Ind. Aerod., 142, 1-14. https://doi.org/10.1016/j.jweia.2015.02.003.
- Shu, Z.R., Li, Q.S., He, Y.C. and Chan, P.W. (2016), "Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications", Appl. Energy, 169, 150-163. https://doi.org/10.1016/j.apenergy.2016.01.135.
- Sugihara, G. and May, R.M. (1990), "Applications of fractals in ecology", Trends Ecology Evolution, 5(3), 79-86. https://doi.org/10.1016/0169-5347(90)90235-6.
- Sun, X., Huang, D. and Wu, G. (2012), "The current state of offshore wind energy technology development", Energy, 41(1), 298-312. https://doi.org/10.1016/j.energy.2012.02.054.
- Tijera, M., Maqueda, G., Yague, C. and Cano, J. (2012), "Analysis of fractal dimension of the wind speed and its relationships with turbulent and stability parameters", Fractal Analysis Chaos Geosci., 29. https://doi/org/10.5772/51876.
- Tokinaga, S., Moriyasu, H., Miyazaki, A. and Shimazu, N. (1999), "A forecasting method for time series with fractal geometry and its application", Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 82(3), 31-39. https://doi.org/10.1002/(SICI)15206440(199903)82:3<31::AID-ECJC4>3.0.CO;2-H.
- Turcotte, D.L. (1997), Fractals and Chaos in Geology And Geophysics. Cambridge University Press.
- Xiu, C., Wang, T., Tian, M., Li, Y. and Cheng, Y. (2014), "Short-term prediction method of wind speed series based on fractal interpolation", Chaos Soliton Fractals, 68, 89-97. https://doi.org/10.1016/j.chaos.2014.07.013.
- Yan, B.W. and Li, Q.S. (2016), "Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains", Energy Conversion Management, 117, 351-366. https://doi.org/10.1016/j.enconman.2016.02.076.
- Yan, B.W., Chan, P.W., Li, Q.S., He, Y.C. and Shu, Z.R. (2020), "Characterising the fractal dimension of wind speed time series under different terrain conditions", J. Wind Eng. Ind. Aerod., 201, 104165. https://doi.org/10.1016/j.jweia.2020.104165.
- Zounemat-Kermani, M. and Kisi, O. (2015), "Time series analysis on marine wind-wave characteristics using chaos theory", Ocean Eng., 100, 46-53. https://doi.org/10.1016/j.oceaneng.2015.03.013.
Cited by
- Estimation of Weibull parameters for wind energy analysis across the UK vol.13, pp.2, 2020, https://doi.org/10.1063/5.0038001
- Dynamic analysis of meteorological time series in Hong Kong: A nonlinear perspective vol.41, pp.10, 2020, https://doi.org/10.1002/joc.7106
- The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions vol.11, pp.10, 2021, https://doi.org/10.3390/diagnostics11101773
- Assessing wind gust characteristics at wind turbine relevant height vol.13, pp.6, 2020, https://doi.org/10.1063/5.0053077
- Experimental investigation of wind pressure characteristics and aerodynamic optimization of a large-span cantilevered roof vol.34, 2020, https://doi.org/10.1016/j.istruc.2021.07.034