DOI QR코드

DOI QR Code

Quantitative assessment of offshore wind speed variability using fractal analysis

  • Shu, Z.R. (Department of Civil Engineering, University of Birmingham) ;
  • Chan, P.W. (Hong Kong Observatory) ;
  • Li, Q.S. (Department of Architecture and Civil Engineering, City University of Hong Kong) ;
  • He, Y.C. (Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou University) ;
  • Yan, B.W. (Chongqing University, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, School of Civil Engineering)
  • Received : 2019.07.26
  • Accepted : 2020.08.05
  • Published : 2020.10.25

Abstract

Proper understanding of offshore wind speed variability is of essential importance in practice, which provides useful information to a wide range of coastal and marine activities. In this paper, long-term wind speed data recorded at various offshore stations are analyzed in the framework of fractal dimension analysis. Fractal analysis is a well-established data analysis tool, which is particularly suitable to determine the complexity in time series from a quantitative point of view. The fractal dimension is estimated using the conventional box-counting method. The results suggest that the wind speed data are generally fractals, which are likely to exhibit a persistent nature. The mean fractal dimension varies from 1.31 at an offshore weather station to 1.43 at an urban station, which is mainly associated with surface roughness condition. Monthly variability of fractal dimension at offshore stations is well-defined, which often possess larger values during hotter months and lower values during winter. This is partly attributed to the effect of thermal instability. In addition, with an increase in measurement interval, the mean and minimum fractal dimension decrease, whereas the maximum and coefficient of variation increase in parallel.

Keywords

References

  1. Balkissoon, S., Fox, N. and Lupo, A. (2020), "Fractal characteristics of tall tower wind speeds in Missouri". Renew. Energy, 154, 1346-1356. https://doi.org/10.1016/j.renene.2020.03.021.
  2. Barbounis, T.G. and Theocharis, J.B. (2007), "Locally recurrent neural networks for wind speed prediction using spatial correlation", Information Sci., 177(24), 5775-5797. https://doi.org/10.1016/j.ins.2007.05.024.
  3. Bendat, J.S. and Piersol, A.G. (2011), Random Data: Analysis and Measurement Procedures (Vol. 729). John Wiley & Sons.
  4. Bilgili, M., Sahin, B. and Yasar, A. (2007), "Application of artificial neural networks for the wind speed prediction of target station using reference stations data", Renew. Energy, 32(14), 2350-2360. https://doi.org/10.1016/j.renene.2006.12.001.
  5. Breslin, M.C. and Belward, J.A. (1999), "Fractal dimensions for rainfall time series", Mathem. Comput. Simulat., 48(4-6), 437-446. https://doi.org/10.1016/S0378-4754(99)00023-3.
  6. Cadenas, E. and Rivera, W. (2009), "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks", Renew. Energy, 34(1), 274-278. https://doi.org/10.1016/j.renene.2008.03.014.
  7. Cadenas, E. and Rivera, W. (2010), "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model", Renew. Energy, 35(12), 2732-2738. https://doi.org/10.1016/j.renene.2010.04.022.
  8. Cadenas, E., Campos‐Amezcua, R., Rivera, W., Espinosa‐Medina, M.A., Mendez‐Gordillo, A.R., Rangel, E. and Tena, J. (2019), "Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis", Energy Sci. Eng., 7(2), 361-378. https://doi.org/10.1002/ese3.277.
  9. Catalao, J.P.D.S., Pousinho, H.M.I. and Mendes, V.M.F. (2011), "Short-term wind power forecasting in Portugal by neural networks and wavelet transform", Renew. Energy, 36(4), 1245-1251. https://doi.org/10.1016/j.renene.2010.09.016.
  10. Chang, T.P., Ko, H.H., Liu, F.J., Chen, P.H., Chang, Y.P., Liang, Y.H. and Chen, Y.H. (2012), "Fractal dimension of wind speed time series", Appl. Energy, 93, 742-749. https://doi.org/10.1016/j.apenergy.2011.08.014.
  11. Damousis, I.G., Alexiadis, M.C., Theocharis, J.B. and Dokopoulos, P.S. (2004), "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation", IEEE Transactions Energy Converse, 19(2), 352-361. https://doi.org/10.1109/TEC.2003.821865.
  12. Dauji, S., Deo, M.C. and Bhargava, K. (2015), "Prediction of ocean currents with artificial neural networks", ISH J. Hydraulic Eng., 21(1), 14-27. https://doi.org/10.1080/09715010.2014.938133.
  13. El-Fouly, T.H.M., El-Saadany, E.F. and Salama, M.M.A. (2006), June), "One day ahead prediction of wind speed using annual trends", In 2006 IEEE Power Engineering Society General Meeting (pp. 7-pp). IEEE.
  14. Erdem, E. and Shi, J. (2011), "ARMA based approaches for forecasting the tuple of wind speed and direction", Appl. Energy, 88(4), 1405-1414. https://doi.org/10.1016/j.apenergy.2010.10.031.
  15. Esteban, M.D., Diez, J.J., Lopez, J.S. and Negro, V. (2011), "Why offshore wind energy?" Renew. Energy, 36(2), 444-450. https://doi.org/10.1016/j.renene.2010.07.009.
  16. Focken, U., Lange, M., Monnich, K., Waldl, H.P., Beyer, H.G. and Luig, A. (2002), "Short-term prediction of the aggregated power output of wind farms-a statistical analysis of the reduction of the prediction error by spatial smoothing effects", J. Wind Eng. Ind. Aerod., 90(3), 231-246. https://doi.org/10.1016/S0167-6105(01)00222-7.
  17. Fortuna, L., Nunnari, S. and Guariso, G. (2014), "Fractal order evidences in wind speed time series", In ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014 (pp. 1-6). IEEE.
  18. Harrouni, S. (2016). "Long term persistence in daily wind speed series using fractal dimension", Int. J. Multiphysics, 7(2). https://doi.org/10.1260/1750-9548.7.2.87.
  19. Harrouni, S. and Guessoum, A. (2009), "Using fractal dimension to quantify long-range persistence in global solar radiation", Chaos, Solitons Fractals, 41(3), 1520-1530. https://doi.org/10.1016/j.chaos.2008.06.016.
  20. He, Y.C., Chan, P.W. and Li, Q.S. (2013), "Wind characteristics over different terrains", J. Wind Eng. Ind. Aerod., 120, 51-69. https://doi.org/10.1016/j.jweia.2013.06.016 .
  21. He, Y.C., Shu, Z.R., Li, Q.S. and Chan, P.W. (2020), "Standardization of marine surface wind speeds at coastal islands", Ocean Eng., 213, 107652. https://doi.org/10.1016/j.oceaneng.2020.107652.
  22. Kani, S.P. and Ardehali, M.M. (2011), "Very short-term wind speed prediction: A new artificial neural network-Markov chain model", Energy Converse. Manage., 52(1), 738-745. https://doi.org/10.1016/j.enconman.2010.07.053.
  23. Kavasseri, R.G. and Nagarajan, R. (2005), "A multifractal description of wind speed records", Chaos, Solitons Fractals, 24(1), 165-173. https://doi.org/10.1016/j.chaos.2004.09.004.
  24. Kavasseri, R.G. and Seetharaman, K. (2009), "Day-ahead wind speed forecasting using f-ARIMA models", Renew. Energy, 34(5), 1388-1393. https://doi.org/10.1016/j.renene.2008.09.006.
  25. Kocak, K. (2009), "Examination of persistence properties of wind speed records using detrended fluctuation analysis", Energy, 34(11), 1980-1985. https://doi.org/10.1016/j.energy.2009.08.006.
  26. Launiainen, J. and Laurila, T. (1984), "Marine wind characteristics in the northern Baltic Sea", Finnish Marine Res., 250, 52-86.
  27. Lei, M., Shiyan, L., Chuanwen, J., Hongling, L. and Yan, Z. (2009), "A review on the forecasting of wind speed and generated power", Renew. Sustain. Energy Rev., 13(4), 915-920. https://doi.org/10.1016/j.rser.2008.02.002.
  28. Li, G. and Shi, J. (2010), "On comparing three artificial neural networks for wind speed forecasting", Appl. Energy, 87(7), 2313-2320. https://doi.org/10.1016/j.apenergy.2009.12.013.
  29. Liu, H., Erdem, E. and Shi, J. (2011), "Comprehensive evaluation of ARMA-GARCH (-M) approaches for modeling the mean and volatility of wind speed", Appl. Energy, 88(3), 724-732. https://doi.org/10.1016/j.apenergy.2010.09.028.
  30. Liu, H., Tian, H.Q. and Li, Y.F. (2012), "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction", Appl. Energy, 98, 415-424. https://doi.org/10.1016/j.apenergy.2012.04.001.
  31. Mandelbrot, B. (1983). The Fractal Geometry of Nature, WH Freeman, New York.
  32. Mandelbrot, B. (1994), Fractals-A Geometry Of Nature. Exploring Chaos. New York: Norton, 122-135.
  33. Nikolic, V., Mitic, V.V., Kocic, L. and Petkovic, D. (2017), "Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique", Knowledge Information Syst., 52(1), 255-265. https://doi.org/10.1007/s10115-016-1006-0.
  34. Petkovic, D., Nikolic, V., Mitic, V.V. and Kocic, L. (2017), "Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms", Flow Measurem. Instrument., 54, 172-176. https://doi.org/10.1016/j.flowmeasinst.2017.01.007.
  35. Rehman, S. and Siddiqi, A.H. (2009), "Wavelet based Hurst exponent and fractal dimensional analysis of Saudi climatic dynamics", Chaos, Solitons Fractals, 40(3), 1081-1090. https://doi.org/10.1016/j.chaos.2007.08.063.
  36. Rubalcaba, J.O. (1997), "Fractal analysis of climatic data: annual precipitation records in Spain", Theoretical Appl. Climatology, 56(1-2), 83-87. https://doi.org/10.1007/BF00863785.
  37. Sakamoto, T., Tanizuka, N., Hirata, Y. and Aihara, K. (2007), "A fractal dimension of wind speed time series", In AIP Conference Proceedings AIP.
  38. Sfetsos, A. (2000), "A comparison of various forecasting techniques applied to mean hourly wind speed time series". Renew. Energy, 21(1), 23-35. https://doi.org/10.1016/S0960-1481(99)00125-1.
  39. Shu, Z.R., Li, Q.S. and Chan, P.W. (2015a), "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function", Appl. Energy, 156, 362-373. https://doi.org/10.1016/j.apenergy.2015.07.027.
  40. Shu, Z.R., Li, Q.S. and Chan, P.W. (2015b), "Statistical analysis of wind characteristics and wind energy potential in Hong Kong", Energy Conversion Management, 101, 644-657. https://doi.org/10.1016/j.enconman.2015.05.070.
  41. Shu, Z.R., Li, Q.S., Chan, P.W. and He, Y.C. (2020), "Seasonal and diurnal variation of marine wind characteristics based on lidar measurements", Meteorolog. Appl., 27(3), e1918. https://doi.org/10.1002/met.1918.
  42. Shu, Z.R., Li, Q.S., He, Y.C. and Chan, P.W. (2015c), "Gust factors for tropical cyclone, monsoon and thunderstorm winds", Wind Eng. Ind. Aerod., 142, 1-14. https://doi.org/10.1016/j.jweia.2015.02.003.
  43. Shu, Z.R., Li, Q.S., He, Y.C. and Chan, P.W. (2016), "Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications", Appl. Energy, 169, 150-163. https://doi.org/10.1016/j.apenergy.2016.01.135.
  44. Sugihara, G. and May, R.M. (1990), "Applications of fractals in ecology", Trends Ecology Evolution, 5(3), 79-86. https://doi.org/10.1016/0169-5347(90)90235-6.
  45. Sun, X., Huang, D. and Wu, G. (2012), "The current state of offshore wind energy technology development", Energy, 41(1), 298-312. https://doi.org/10.1016/j.energy.2012.02.054.
  46. Tijera, M., Maqueda, G., Yague, C. and Cano, J. (2012), "Analysis of fractal dimension of the wind speed and its relationships with turbulent and stability parameters", Fractal Analysis Chaos Geosci., 29. https://doi/org/10.5772/51876.
  47. Tokinaga, S., Moriyasu, H., Miyazaki, A. and Shimazu, N. (1999), "A forecasting method for time series with fractal geometry and its application", Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 82(3), 31-39. https://doi.org/10.1002/(SICI)15206440(199903)82:3<31::AID-ECJC4>3.0.CO;2-H.
  48. Turcotte, D.L. (1997), Fractals and Chaos in Geology And Geophysics. Cambridge University Press.
  49. Xiu, C., Wang, T., Tian, M., Li, Y. and Cheng, Y. (2014), "Short-term prediction method of wind speed series based on fractal interpolation", Chaos Soliton Fractals, 68, 89-97. https://doi.org/10.1016/j.chaos.2014.07.013.
  50. Yan, B.W. and Li, Q.S. (2016), "Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains", Energy Conversion Management, 117, 351-366. https://doi.org/10.1016/j.enconman.2016.02.076.
  51. Yan, B.W., Chan, P.W., Li, Q.S., He, Y.C. and Shu, Z.R. (2020), "Characterising the fractal dimension of wind speed time series under different terrain conditions", J. Wind Eng. Ind. Aerod., 201, 104165. https://doi.org/10.1016/j.jweia.2020.104165.
  52. Zounemat-Kermani, M. and Kisi, O. (2015), "Time series analysis on marine wind-wave characteristics using chaos theory", Ocean Eng., 100, 46-53. https://doi.org/10.1016/j.oceaneng.2015.03.013.

Cited by

  1. Estimation of Weibull parameters for wind energy analysis across the UK vol.13, pp.2, 2020, https://doi.org/10.1063/5.0038001
  2. Dynamic analysis of meteorological time series in Hong Kong: A nonlinear perspective vol.41, pp.10, 2020, https://doi.org/10.1002/joc.7106
  3. The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions vol.11, pp.10, 2021, https://doi.org/10.3390/diagnostics11101773
  4. Assessing wind gust characteristics at wind turbine relevant height vol.13, pp.6, 2020, https://doi.org/10.1063/5.0053077
  5. Experimental investigation of wind pressure characteristics and aerodynamic optimization of a large-span cantilevered roof vol.34, 2020, https://doi.org/10.1016/j.istruc.2021.07.034