References
- Akon, A.F. and Kopp, G.A. (2016), "Mean pressure distributions and reattachment lengths for roof-separation bubbles on low-rise buildings", J. Wind Eng. Ind. Aerod., 155, 115-125, http://doi.org/10.1016/j.jweia.2016.05.008.
- Bardina, J., Huang, P., Coakley, T., Bardina, J., Huang, P. and Coakley, T. (1997), "Turbulence modeling validation", The 28th Fluid Dynamics Conference, 2121.
- Blocken, B. (2015), "Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build. Environ., 91, 219-245, http://doi.org/10.1016/j.buildenv.2015.02.015.
- Cope, A.D., Gurley, K.R., Gioffre, M. and Reinhold, T.A. (2005), "Low-rise gable roof wind loads: Characterization and stochastic simulation", J. Wind Eng. Ind. Aerod., 93(9), 719-738, http://doi.org/10.1016/j.jweia.2005.07.002.
- Dagnew, A. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: A review", Wind Struct., 16(6), 629-660, http://doi.org/10.12989/was.2013.16.6.629.
- Ferreira, A.D., Thiis, T., Freire, N.A. and Ferreira, A.M. (2018), "A wind tunnel and numerical study on the surface friction distribution on a flat roof with solar panels", Environ. Fluid Mech., 1-17, https://doi.org/10.1007/s10652-018-9641-5.
- Franke, J. (2007), Best practice guideline for the CFD simulation of flows in the urban environment, COST Action, Hamburg, Germany.
- Hertwig, D., Patnaik, G. and Leitl, B. (2017), "LES validation of urban flow, part I: Flow statistics and frequency distributions", Environ. Fluid Mech., 17(3), 521-550, http://doi.org/10.1007/s1065201695077
- Hoxey, R., Robertson, A., Basara, B. and Younis, B. (1993), "Geometric parameters that affect wind loads on low-rise buildings: full-scale and CFD experiments", J. Wind Eng. Ind. Aerod., 50, 243-252, http://doi.org/10.1016/0167-6105(93)90079-4.
- Kanda, M. and Maruta, E. (1993), "Characteristics of fluctuating wind pressure on long low-rise buildings with gable roofs", J. Wind Eng. Ind. Aerod., 50, 173-182, http://doi.org/10.1016/0167-6105(93)90072-V.
- Kopp, G.A. and Morrison, M.J. (2018), "Component and cladding wind loads for low-slope roofs on low-rise buildings", J. Struct. Eng., 144(4), 04018019, http://doi.org/10.1061/(ASCE)ST.1943-541X.0001989.
- Liu, J. and Niu, J. (2019), "Delayed detached eddy simulation of pedestrian-level wind around a building array-The potential to save computing resources", Build. Environ., 152, 28-38, http://doi.org/10.1016/j.buildenv.2019.02.011.
- Liu, Z., Yu, Z., Zhu, F., Chen, X. and Zhou, Y. (2019), "An investigation of snow drifting on flat roofs: Wind tunnel tests and numerical simulations", Cold Reg. Sci. Technol., 162, 74-87, http://doi.org/10.1016/j.coldregions.2019.03.016.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605, http://doi.org/10.2514/3.12149.
- O'Rourke, M. and Auren, M. (1997), "Snow loads on gable roofs", J. Struct. Eng., 123(12), 1645-1651, http://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1645).
- O'Rourke, M., DeGaetano, A. and Tokarczyk, J.D. (2004), "Snow drifting transport rates from water flume simulation", J. Wind Eng. Ind. Aerod., 92(14-15), 1245-1264, https://doi.org/10.1016/j.jweia.2004.08.002.
- Ozmen, Y., Baydar, E. and van Beeck, J.P.A.J. (2016), "Wind flow over the low-rise building models with gabled roofs having different pitch angles", Build. Environ., 95, 63-74, http://doi.org/10.1016/j.buildenv.2015.09.014.
-
Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new
$k-{\epsilon}$ eddy viscosity model for high reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238, http://doi.org/10.1016/0045-7930(94)00032-T. - Sousa, J.M.M. and Pereira, J.C.F. (2004), "DPIV study of the effect of a gable roof on the flow structure around a surface-mounted cubic obstacle", Exp. Fluids, 37(3), 409-418, http://doi.org/10.1007/s00348-004-0830-2.
- Taylor, D.A. (1979), "A survey of snow loads on the roofs of arena-type buildings in Canada", Can. J. Civil. Eng., 6(1), 85-96, http://doi.org/10.1139/l79-010.
- Taylor, D.A. (1980), "Roof snow loads in Canada", Can. J. Civil. Eng., 7(1), 1-18, http://doi.org/10.1139/l95-087.
- Thiis, T.K. (2000), "A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings", Wind Struct., 3(2), 73-81, http://doi.org/10.12989/was.2000.3.2.073.
- Thiis, T.K. and O'Rourke, M. (2015), "Model for snow loading on gable roofs", J. Struct. Eng., 141(12), 04015051. http://doi.org/10.1061/(ASCE)ST.1943-541X.0001286.
- Tominaga, Y. (2018), "Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives", Cold Reg. Sci. Technol., 150, 2-14, https://doi.org/10.1016/j.coldregions.2017.05.004.
- Tominaga, Y., Akabayashi, S.I., Kitahara, T. and Arinami, Y. (2015), "Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations", Build. Environ., 84, 204-213, http://doi.org/10.1016/j.buildenv.2014.11.012.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761, http://doi.org/10.1016/j.jweia.2008.02.058.
- Xing, F., Mohotti, D. and Chauhan, K. (2018a), "Experimental and numerical study on mean pressure distributions around an isolated gable roof building with and without openings", Build. Environ., 132, 30-44. http://doi.org/10.1016/j.buildenv.2018.01.027.
- Xing, F., Mohotti, D. and Chauhan, K. (2018b), "Study on localised wind pressure development in gable roof buildings having different roof pitches with experiments, RANS and LES simulation models", Build. Environ., 143, 240-257, http://doi.org/10.1016/j.buildenv.2018.07.026.
- Yakhot, V., Orszag, S., Thangam, S., Gatski, T. and Speziale, C. (1992), "Development of turbulence models for shear flows by a double expansion technique", Phys. Fluids A: Fluid Dyn, 4(7), 1510-1520, https://doi.org/10.1063/1.858424.
- Yu, Z., Zhu, F., Cao, R., Chen, X., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs", Wind Struct., 28(1), 31-47, http://doi.org/10.12989/was.2019.28.1.031.
- Zhao, L., Yu, Z., Zhu, F., Qi, X. and Zhao, S. (2016), "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542, http://dx.doi.org/10.12989/was.2016.23.6.523.
- Zhou, X., Kang, L., Gu, M., Qiu, L. and Hu, J. (2016), "Numerical simulation and wind tunnel test for redistribution of snow on a flat roof", J. Wind Eng. Ind. Aerod., 153, 92-105, http://dx.doi.org/10.1016/j.jweia.2016.03.008.
- Zhou, X., Zhang, Y., Kang, L. and Gu, M. (2019), "CFD simulation of snow redistribution on gable roofs: Impact of roof slope", J. Wind Eng. Ind. Aerod., 185, 16-32, http://doi.org/10.1016/j.jweia.2018.12.008.
- Zhu, F., Yu, Z., Zhao, L., Xue, M. and Zhao, S. (2017), "Adaptive-mesh method using RBF interpolation: A time-marching analysis of steady snow drifting on stepped flat roofs", J. Wind Eng. Ind. Aerod., 171, 1-11, http://doi.org/10.1016/j.jweia.2017.09.008.