References
- Bardina, J., Huang, P. and Coakley, T. (1997), "Turbulence modeling validation", Proceedings of the 28th Fluid Dynamics Conference, Snowmass Village, Colorado, U.S.A., June-July.
- Bunker, R.S. and Metzger, D.E. (1990), "Local heat transfer in internally cooled turbine airfoil leading edge regions: Part I-impingement cooling without film coolant extraction", J. Turbomachine., 112(3), 451-458. https://doi.org/10.1115/1.2927680.
- Chupp, R.E., Helms, H.E., McFadden, P.W. and Brown, T.R. (1969), "Evaluation of internal heat-transfer coefficients for impingement-cooled turbine airfoils", J. Aircraft, 6(3), 203-208. https://doi.org/10.2514/3.44036.
- Dong, L.L., Leung, C.W. and Cheung, C.S. (2002), "Heat transfer characteristics of premixed butane/air flame jet impinging on an inclined flat surface", Heat Mass Transfer, 39(1), 19-26. https://doi.org/10.1007/s00231-001-0288-1.
- Ekkad, S., Huang, Y. and Han, J.C. (2000), "Impingement heat transfer measurements under an array of inclined jets", J. Thermophys. Heat Tr, 14(2), 286-288. https://doi.org/10.2514/2.6524.
- Froessling, N. (1958), "Evaporation, heat transfer, and velocity distribution in two-dimensional and rotationally symmetrical laminar boundary-layer flow", NACA-TM-14, NACA Technical Memorandum, U.S.A.
- Gau, C. and Chung, C. (1991). "Surface curvature effect on slot-air-jet impingement cooling flow and heat transfer process", J. Heat Trans., 113(4), 858-864. https://doi.org/10.1115/1.2911214.
- Goldstein, R.J. and Cho, H.H. (1995), "A review of mass transfer measurements using naphthalene sublimation", Exp. Therm. Fluid Sci., 10(4), 416-434. https://doi.org/10.1016/0894-1777(94)00071-F.
- Greitzer, E.M., Tan, C.S. and Graf, M.B. (2007), Internal Flow: Concepts and Applications, Cambridge University Press, Cambridge, U.K.
- Hong, S.K., Lee, D.H. and Cho, H.H. (2008), "Heat/mass transfer measurement on concave surface in rotating jet impingement", J. Mech. Sci. Technol., 22(10), 1952-1958. https://doi.org/10.1007/s12206-008-0738-5.
- Hrycak, P. (1981), "Heat transfer from a row of impinging jets to concave cylindrical surfaces", Int. J. Heat Mass Tran., 24(3), 407-419. https://doi.org/10.1016/0017-9310(81)90048-X.
- Hwang, J.J. and Cheng, C.S. (2001), "Impingement cooling in triangular ducts using an array of side-entry wall jets", Int. J. Heat Mass Tran., 44(5), 1053-1063. https://doi.org/10.1016/S0017-9310(00)00141-1.
- Ibrahim, M.B., Kochuparambil, B.J., Ekkad, S.V. and Simon, T.W. (2005), "CFD for jet impingement heat transfer with single jets and arrays", Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, U.S.A., June.
- Jia, R., Rokni, M. amd Sunden, B. (2002), "Numerical assessment of different turbulence models for slot jet impinging on flat and concave surfaces", Proceedings of the ASME Turbo Expo2020: Power for Land, Sea, and Air, Amsterdam, The Netherlands, June.
- Li, H.L., Chiang, H.W.D. and Hsu, C.N. (2011), "Jet impingement and forced convection cooling experimental study in rotating turbine blades", Int. J. Turbo Jet Eng., 28(2), 147-158. https://doi.org/10.1515/tjj.2011.015.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149.
- Metzger, D.E. and Rued, K. (1989), "The influence of turbine clearance gap leakage on passage velocity and heat transfer near blade tips: Part I-sink flow effects on blade pressure side", J. Turbomach., 111(3), 284-292. https://doi.org/10.1115/1.3262267.
- Saeed, F. (2008), "Numerical simulation of surface heat transfer from an array of hot-air jets", J. Aircraft, 45(2), 700-714. https://doi.org/10.2514/1.33489.
- Schobeiri, M. (2012), Turbomachinery Flow Physics and Dynamic Performance, Springer, Berlin, Germany.
- Stevens, J. and Webb, B.W. (1991), "The effect of inclination on local heat transfer under an axisymmetric, free liquid jet", Int. J. Heat Mass Trans., 34(4-5), 1227-1236. https://doi.org/10.1016/0017-9310(91)90031-9.
- Tabakoff, W. and Clevenger, W. (1972), "Gas turbine blade heat transfer augmentation by impingement of air jets having various configurations", J. Eng. Power, 94(1), 51-58. https://doi.org/10.1115/1.3445620.
- Tu, J., Yeoh, G.H. and Liu, C. (2013), Computational Fluid Dynamics, Butterworth-Heinemann, Amsterdam, The Netherlands.