DOI QR코드

DOI QR Code

Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam

  • Hosseini, S.A.H. (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University) ;
  • Moghaddam, M.H. Noroozi (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • Rahmani, O. (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan)
  • 투고 : 2019.10.17
  • 심사 : 2020.06.27
  • 발행 : 2020.11.25

초록

The present study investigates axial vibration of a FG nanobeam using nonlocal elasticity theory under clamped-clamped and clamped-free boundary conditions. Power law, exponential law and sigmoid law are applied as grading laws to examine the effect of the material distribution on axial vibration of the FG nanobeam. A parametric study was done to examine the effect of length scale on the dynamic behavior of the structure and the results are presented. It was observed that consideration of the nonlocal length scale is essential when analyzing the free vibration of a FG nanobeam. The results of the present study can be used as benchmarks in future studies of FG nanostructures.

키워드

참고문헌

  1. Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E Low-dimens. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007.
  2. Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
  3. Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 417-437.
  4. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
  5. Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircraft Spacecraft Sci., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.
  6. Ebrahimi, F. and Fardshad, R.E. (2018), "Dynamic modeling of nonlocal compositionally graded temperature-dependent beams", Adv. Aircraft Spacecraft Sci., 5(1), 141-164. https://doi.org/10.12989/aas.2018.5.1.141.
  7. Ebrahimi, F. and Heidar, E. (2018), "Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects", Adv. Aircraft Spacecraft Sci., 5(3), 295-318. https://doi.org/10.12989/aas.2018.5.3.295.
  8. Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  9. Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  10. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2019), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Therm. Stresses, 43(2), 157-174. https://doi.org/10.1080/01495739.2019.1666694.
  11. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.
  12. Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B Eng., 52, 199-206. http://doi.org/10.1016/j.compositesb.2013.04.023.
  13. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25-36. https://doi.org/10.12989/anr.2020.8.1.025.
  14. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2019), "Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control, 26(11-12), 913-928. https://doi.org/10.1177%2F1077546319890170. https://doi.org/10.1177/1077546319890170
  15. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118.
  16. Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1744001.
  17. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020a), "On torsional vibrations of triangular nanowire", Thin-Walled Struct., 148, 106591. https://doi.org/10.1016/j.tws.2019.106591.
  18. Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020b), "Torsional vibration of nanowire with equilateral triangle cross section based on nonlocal strain gradient for various boundary conditions: Comparison with hollow elliptical cross section", Eur. Phys. J. Plus, 135(3), 1-20. https://doi.org/10.1140/epjp/s13360-020-00312-z.
  19. Khosravi, F., Hosseini, S.A. and Hayati, H. (2020c), "Free and forced axial vibration of single walled carbon nanotube under linear and harmonic concentrated forces based on nonlocal theory", Int. J. Modern Phys. B, 34(8), 2050067. https://doi.org/10.1142/S0217979220500678.
  20. Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020d), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234(10), 1928-1942. https://doi.org/10.1177%2F0954406220903341. https://doi.org/10.1177/0954406220903341
  21. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020e), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  22. Mahi, A., Adda Bedia, E., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010.
  23. Mochida, Y. and Ilanko, S. (2016), "Condensation of independent variables in free vibration analysis of curved beams", Adv. Aircraft Spacecraft Sci., 3(1), 45-59. https://doi.org/10.12989/aas.2016.3.1.045.
  24. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110 192-199. http://doi.org/10.1016/j.compstruct.2013.12.006.
  25. Petrolo, M., Carrera, E. and Alawami, A.S.A.S. (2016), "Free vibration analysis of damaged beams via refined models", Adv. Aircraft Spacecraft Sci., 3(1), 95-112. https://doi.org/10.12989/aas.2016.3.1.095.
  26. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
  27. Rahmani, O., Hosseini, S.A.H. and Parhizkari, M. (2016), "Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: An analytical approach", Microsyst. Technol., 23(7), 2739-2751. https://doi.org/10.1007/s00542-016-3127-5.
  28. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  29. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  30. Reddy, J. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
  31. Reddy, J. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
  32. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  33. Reddy, J.N. and Kim, J. (2012), "A nonlinear modified couple stress-based third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006.
  34. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  35. Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B Eng., 45(1), 581-586. http://doi.org/10.1016/j.compositesb.2012.04.064.
  36. Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
  37. Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  38. Tauchert, T.R. (1974), Energy Principles in Structural Mechanics, McGraw-Hill, New York, U.S.A.