참고문헌
- Alfaro, P., Delgado, J., Estevez, A., Molina, J.M., Moretti, M. and Soria, J.M. (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, v.91, p.505-513. https://doi.org/10.1007/s00531-001-0241-z
- Allen, J.R.L. (1982) Sedimentary structures: their character and physical basis. Vol. II, Elsevier, Amsterdam, 663p.
- Bahk, J.J. and Chough, S.K. (1996) An interplay of synand intereruption depositional processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, v.43, p.421-438. https://doi.org/10.1046/j.1365-3091.1996.d01-19.x
- Bonilla, M.G. (1988) Minimum earthquake magnitude associated with coseismic surface faulting: Bulletin of the Association of Engineering Geology, v.25, p.17-29.
- Cheon, Y., Son, M., Song, C.W., Kim, J.-S. and Sohn, Y.K. (2012) Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, v.16, p.253-273. https://doi.org/10.1007/s12303-012-0029-0
- Choi, S.J. (2019) Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan. Economic and Environmental Geology, v.52, p.409-25. https://doi.org/10.9719/EEG.2019.52.5.409
- Choi, S.J., Merritts, D.J. and Ota, Y. (2008) Elevations and ages of marine terraces and late Quaternary rock uplift in southeastern Korea. Journal of Geophysical Research: Solid Earth, v.113, p.B10403. https://doi.org/10.1029/2007JB005260
- Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.S. (2009) OSL dating of marine terrace sediments on the southern coast of Korea with implications for Quaternary tectonics. Quaternary International, v.199, p.3-14. https://doi.org/10.1016/j.quaint.2008.07.009
- Choi, J-H., Ko, K., Gihm, Y.S., Cho, C.S., Lee, H., Song, S. K., Bang, E, S., Lee, H-J., Bae, H.K., Kim, S.W., Choi, S-J., Lee, S.S. and Lee, S.R. (2019) Surface Deformations and Rupture Processes Associated with the 2017 Mw 5.4 Pohang, Korea, Earthquake. Bulletin of the Seismological Society of America, v.109, p.756-769.
- Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.-H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S. and Kee, W.-S. (2012) Active faults and seismic hazard map. National emergency Management Agency, Seoul, Korea, 882p.
- Duke, W.L., Arnott, R.W.C. and Cheel, R.J. (1991) Shelf sandstones and hummocky cross stratification: New insight on a stormy debate. Geology, v.19, p.625-628. https://doi.org/10.1130/0091-7613(1991)019<0625:SSAHCS>2.3.CO;2
- Dumas, S., Arnott, R.W.C. and Southard, J.B. (2005) Experiments on oscillatory-flow and combined flow bed forms: Implications for interpreting parts of the shallow marine rock record: Journal of Sedimentary Research, v.75, p.501-513. https://doi.org/10.2110/jsr.2005.039
- Galli, P. (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, v.324, p.169-187. https://doi.org/10.1016/S0040-1951(00)00118-9
- Geological Society of Korea (2019) Summary report of the Korean Government Commission on relations between the 2017 Pohang earthquake and EGS project. Geological Society of Korea, Seoul, Korea, 346 p.
- Gihm, Y.S., Kim, S. W., Ko, K., Choi, J-H., Bae, H., Hong, P. S., Lee, Y., Lee, H., Jin, K., Choi, S-J., Kim, J.C., Choi, M. S. and Lee, S. R. (2018) Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake. Geoscience Journal, v.22, p.871-880. https://doi.org/10.1007/s12303-018-0051-y
- Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., Lopez- Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T. and Wiemer, S. (2018) The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science, v.360, p.1003-1006. https://doi.org/10.1126/science.aat2010
- Hart, B. S. and Plint, A. G. (1995) Gravelly shoreface and beachface deposits, In Plint, A. G. (ed.), Clastic facies analysis. International Association of Sedimentologists Special Publication, v.22, p.75-99.
- Hansen, L., Eilertsen, R.S., Solberg, I.-L., Sveian, H. and Rokoengen, K. (2007) Facies characteristics, morphology and depositional models of clay-slide deposits in terraced fjord valleys, Norway. Sedimentary Geology, v.202, p.710-729. https://doi.org/10.1016/j.sedgeo.2007.08.004
- Hwang, I.G., Chough, S.K., Hong, S.W. and Choe, M.Y. (1995) Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sedimentary Geology, v.98, p.147-179. https://doi.org/10.1016/0037-0738(95)00031-3
- Jeong, J.O., Kwon, C.W. and Sohn, Y.K. (2008) Lithofacies and architecture of a basinwide tuff unit in the Miocene Eoil Basin, SE Korea: modes of pyroclastic sedimentation, changes in eruption style, and implications for basin configuration. Geological Society of America Bulletin, v.120, p.1263-1279. https://doi.org/10.1130/B26077.1
- Jolivet, L., Fournier, M., Huchon, P., Rozhdestvenskiy, V.S., Sergeyev, K.F. and Oscorbin, L.S. (1992) Cenozoic intracontinental dextral motion in the Okhotsk-Japan Sea Region. Tectonics, v.11, p.968-977. https://doi.org/10.1029/92TC00337
- Kim, W.H. (1990) Significance of Early to Middle Miocene planktonic foraminiferal biostratigraphy of the E-core in the Pohang Basin, Korea. Journal of Paleontological Society of Korea, v.6, p.144-164.
- Kim, Y.S. and Jin, K. (2006) Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, v.42, p.79-94 (in Korean with English abstract).
- Kim, J. and Paik, I.S. (2013) Chondrites from the Duho Formation (Miocene) in the Yeonil Group, Pohang Basin, Korea: Occurrences and paleoenvironmental implications. Journal of the Geological Society of Korea, v.49, p.407-416 (in Korean with English abstract).
- Kim, J.H., Nam, K.S. and Jeon, Y.S. (2017) Diversity of Miocene fossil Acer from the Pohang Basin, Korea. Journal of the Geological Society of Korea, v.53, p.387-405 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.3.387
- Kim, S-H., Park, J-Y. and Lee, Y-N. (2018) A tooth of Cosmopolitodus hastalis (Elasmobranchii: Lamnidae) from the Duho Formation (Middle Miocene) of Pohangsi, Gyeongsangbuk-do, South Korea. Journal of the Geological Society of Korea, v.54, p.121-131 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2018.54.2.121
- Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S.Y. and Seo, W. (2018) Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, v.360, p.1007-1009. https://doi.org/10.1126/science.aat6081
- Kim, M-C., Jung, S., Yoon, S., Jeong, R-Y., Song, C, W. and Son, M. (2016) Neotectonic crustal deformation and current stress field in the korean peninsula and their tectonic implications: A review. Journal of Petrology of Korea, v.25, p.169-193 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2016.25.3.169
- KMA, The wave records of the Pohang Buoy since 2010: https://data.kma.go.kr/data/sea/selectBuoyRltmList.do?pgmNo=52 (December, 2019).
- Lee, K. and Yang, W.S. (2006) Historical seismicity of Korea: Bulletin of the Seismological Society of America, v.96, p.846-855. https://doi.org/10.1785/0120050050
- Lee, K.-K., Ellsworth, W.L., Giardini, D., Townend, J., Ge, S., Shimamoto, T., Yeo, I.-W., Kang, T.-S., Rhie, J., Sheen, D.-H., Chang, C., Jeong-Ung, W. and Langenburch, C. (2019) Managing injection-induced seismic risks. Science, v.364, p.730-732. https://doi.org/10.1126/science.aax1878
- Leeder, M.R. (1987) Sediment deformation structures and the palaeotectonic analysis of sedimentary basins, with a case-study from the Carboniferous of northern England. In: Jones, M.E., Preston, R.M.F. (ed.), Deformation of Sediments and Sedimentary Rocks. Geological Society London, Special Publications, v.29, p.137-146. https://doi.org/10.1144/GSL.SP.1987.029.01.12
- Lim, J.D. (2005) The first dolphin fossil from the Miocene of Korea. Current Science, v.89, p.939-940.
- Maltman, A.J. and Bolton, A. (2003) How sediments become mobilized. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J. and Morley, C.K. (ed.), Subsurface sediment mobilization. Geological Society of London, Special Publications, v.216, p.9-20. https://doi.org/10.1144/GSL.SP.2003.216.01.02
- Massari, F. and Parea, G.C (1988) Progradational gravel beach sequences in a moderate- to high-energy, microtidal marine environment. Sedimentology, v.35, p.881-913. https://doi.org/10.1111/j.1365-3091.1988.tb01737.x
- Massari, F., Ghibaudo, G., D'Alessandro, A. and Davaud, E. (2001) Water-upwelling pipes and soft-sediment deformation structures in Lower Pleistocene calcarenites (Salento, southern Italy). Bulletin of the Geological Society of America, v.113, p.545-560. https://doi.org/10.1130/0016-7606(2001)113<0545:WUPASS>2.0.CO;2
- Obermeier, S.F. (1996) Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, v.44, p.1-76. https://doi.org/10.1016/S0013-7952(96)00040-3
- Obermeier, S.F., Olson, S.M., Green, R.A. (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, v.76, p.206-234.
- Owen, G. (1987) Deformation processes in unconsolidated sands. In: Jones, M.E. and Preston, R.M.F. (ed.), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, v.29, p.11-24. https://doi.org/10.1144/GSL.SP.1987.029.01.02
- Owen, G. (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, v.43, p.279-293. https://doi.org/10.1046/j.1365-3091.1996.d01-5.x
- Owen, G. (2003) Load structures: gravity-driven sediment mobilization in the shallow subsurface. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J., and Morley, C.K. (ed.), Subsurface Sediment Mobilization. Geological Society of London, Special Publications, v.216, p.21-34. https://doi.org/10.1144/GSL.SP.2003.216.01.03
- Owen, G., Moretti, M. and Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, v.235, p.133-140. https://doi.org/10.1016/j.sedgeo.2010.12.010
- Rossetti, D.F. (1999) Soft-sediment deformation structures in late Albian to Cenomanian deposits, Saõ Luís Basin, northern Brazil: evidence for palaeoseismicity. Sedimentology, v.46, p.1065-1081. https://doi.org/10.1046/j.1365-3091.1999.00265.x
- Sohn, Y.K. and Son, M. (2004) Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology, v.51, p.1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
- Sohn, Y.K., Ki, J.S., Jung, S., Kim, M.-C., Cho, H. and Son, M. (2013) Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic-epiclastic succession in the Miocene Janggi Basin, SE Korea. Sedimentary Geology, v.288, p.40-59. https://doi.org/10.1016/j.sedgeo.2013.01.002
- Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H. and Sohn, Y.K. (2015) Miocene tectonic evolution of the basins and fault systems, SE Kora: Dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, v.172, p.664-680. https://doi.org/10.1144/jgs2014-079
- Song, C.W., Son, M., Sohn, Y.K., Han, R., Shinn, Y.J. and Kim, J.-C. (2015) A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. Journal of the Geological Society of Korea, v.51, p.53-66 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.53
- Toro, B. and Pratt, B.R. (2016) Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming). Sedimentary Geology, v.344, p.175-204. https://doi.org/10.1016/j.sedgeo.2016.02.003
- Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W. and Haynes, M.L. (2002) The earthquake potential of the New Madrid seismic zone: Bulletin of the Seismological Society of America, v.92, p.2080-2089. https://doi.org/10.1785/0120010227
- van Loon, A.J. (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, v.15, p.3-55.
- Wells, D.L. and Coppersmith, K.J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of Seismological Society of America, v.84, p.974-1002.
- Yoon, S.H., Sohn, Y.K. and Chough, S.K. (2014) Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, v.352, p.70-88. https://doi.org/10.1016/j.margeo.2014.03.004