DOI QR코드

DOI QR Code

폐금속광산 중금속오염토양에서 억새를 이용한 식물안정화공법을 위한 토양개량제 선정

Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • 정문호 (한국광해관리공단 기술연구소) ;
  • 지원현 (한국광해관리공단 기술연구소) ;
  • 이진수 (한국광해관리공단 기술연구소) ;
  • 양인재 (한국광해관리공단 기술연구소)
  • 투고 : 2020.08.21
  • 심사 : 2020.10.05
  • 발행 : 2020.10.28

초록

본 연구는 폐금속광산의 중금속 오염 토양에서 억새를 이용한 식물안정화공법을 적용하기 위해 토양개량제 처리에 따른 토양내 중금속 이동성과 억새내 중금속 축적형태 등을 분석하여 적정 토양개량제를 선발하고자 수행하였다. 이를 위해 중금속 오염토양을 바닥재 1, 2%, 비산재 1, 2%, 폐석회+굴패각 1, 2%, AMDS 10, 20%, 퇴비 3.4% 등으로 처리하고, 비교를 위해 아무 처리를 하지 않은 대조구에 억새를 식재한 후 6개월을 재배하였다. Mehlich-3에 의한 토양내 중금속 함량, 억새 체내 중금속 이동형태 등을 분석한 결과 AMDS 20%가 식물안정화공법에 가장 효과적인 개량제로 선정되었으며, 2순위는 AMDS 10%가 선정되었다. 폐석회+굴패각, 바닥재와 비산재도 식물안정화공법적용 효과가 대조구에 비해 개선된 것으로 나타났다. 개량제 처리에 따라 일부 중금속의 토양내 유동성이 증가하는 결과를 보여, 실제 사업 적용을 위해 사전에 대상지역의 토양오염 특성을 분석하여 현장특성에 적합하게 토양개량제를 선정해야 할 것으로 사료된다.

The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of M. sinensis showed that AMDS 20% was more effective than other amendments for phytostablization, and AMDS 10% showed second effectiveness. Waste lime+oyster, bottom ash and fly ash were also improved compared to control. Mobility of some heavy metal was increased by treatments. Therefore, it is necessary of preparatory investigation of soil condition to select soil amendment to apply on-site phytostablization.

키워드

참고문헌

  1. Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, 533p.
  2. Atkinson, C.J. (2009) Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy., v.33, p.752-759. https://doi.org/10.1016/j.biombioe.2009.01.005
  3. Baldaotoni, D., Leone, A.N., Iovieno, P., Morra, L., Zaccardelli, M. and Flfani, A. (2010) Total and available soil trace element concentrations in two Mediterranean agricutural systems treated with minucipal waste compost or conventional mineral fertilizers. Chemosphere., v.80, p.1006-1013. https://doi.org/10.1016/j.chemosphere.2010.05.033
  4. Berti, W. R. and S.D. Cunningham. (2000). Phytostablization of metals. In "Phytostablization of Toxic Metals: Using Plants to Clean Up the Environment" (I. B. Raskin and D. Ensley, Eds.), Wiley, New York, pp.71-88.
  5. Bolan, N.S., Park, J.H., Robinson, Naidu, B.R. and Huh, K.Y. (2011) Phytostablization: A Green Approach to Contaminant Containment. Adv. Agron., v.112, p.145-204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4
  6. Cheng, S.F. and Hseu, Z.Y. (2002) In-situ immobilization of cadmiun and lead by different amendments in to contaminated soils. Water Air Soil Pollut., v.140, p.73-84. https://doi.org/10.1023/A:1020132106541
  7. Chens, S. and Stephen. A.R. (2006) MISCANTHUS Andersson. Flora of China., v.22, p.581-583.
  8. Cho, J.S., Ju, Y.K., Chang, Y.D. and Lee, C.H. (2010) Screening of useful plants for zinc phytoremideation in upland soils contaminated with heavy metals. Kor. J. Plnat Res. Abtr., v.5, p.114.
  9. Cluis C. (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotech. J., v.2, p.60-67.
  10. Cunningham, S.D. and Berti, W.R. (1997) Phytoextraction or phystabilization: technical, economic and regulatory considerations of the soil-lead issue. In N. Terry (de.) Proceedings of th 4th international conference on biogeochemistry of trace elements, Berkeley, Califonia, USA.
  11. Cunningham, S.D., Berti, W.R. and Huang, J.W. (1995) Agronomics remediation of contaminated soils. Trends Bio. Sci., v.13, p.393-397. https://doi.org/10.1016/S0167-7799(00)88987-8
  12. Cunningham, S.D., Anderson, T.A., Schwab, A.P. and Hsu, F. (1996) Phytoremediation of soils contaminated with organic compounds. Adv. Agron., v.56, p.55-114. https://doi.org/10.1016/S0065-2113(08)60179-0
  13. DIN (Deutsches Institue fur Normung). (1995) Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag. Berlin, Germany.
  14. De Bartolomeo, A., Poletti, L., Sanchini, G., Sebastiani, B. and Morozzi, G. (2004) Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere, v.55, p.1323-1329. https://doi.org/10.1016/j.chemosphere.2003.12.005
  15. Greef, J.M., Deuter, M., Jung, C. and Schondelmaier. J. (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev., v.44, p.185-197. https://doi.org/10.1023/A:1008693214629
  16. Gomez-Sagasti, M.T., Alkorta, I., Becerril, J.M., Epelde, L., Anza, M. and Garbisu, C. (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut., v.223, p.3249-3262. https://doi.org/10.1007/s11270-012-1106-8
  17. Han, S.H., Hyun, J.O., Lee, K.J. and Cho. D.H. (1998) Accumulation of heavy metals(Cd, Cu, Zn, Pb) in five tree species in relation to contamination of soil near two closed-Zinc mining sites. Jour. Korean For. Soc., v.87, p.466-474.
  18. Hong, S.H. and Cho. K.S. (2007) Effect of plants rhyzobacteria and physicochemical factor on the phytoremediation of contaminated soi. Kor. J. Micorbiol. Biotechnol., v.35, p.261-271.
  19. Ju, Y.K., Kwon, H.J., Cho, J.S., Shin, S.L. and Kim. T.S. (2011) Growth and heavy metal absorption capacity of Miscanthus sinensis var. purpurascens RENDLE according to types of land use. Korean J. Plant Res., v.24, p.48-54. https://doi.org/10.7732/kjpr.2011.24.1.048
  20. Jung, M.H., Lee, J.S. and Ji. W.H. (2020) Soil Neutralizer Selection for Rehabilitation in the Acid Soil of Abandoned Metal Mine Using Miscanthus sinensis Anderss. Jour. Korean J. Soil. Sci. Fert., v.53, p.237-246.
  21. Jung, M.H., Lee, S.H., Ji, W.H., Park. M.J. and Jung, K.H. (2016) Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine. Jour. Korean J. Soil. Sci. Fert., v.49, p.627-634. https://doi.org/10.7745/KJSSF.2016.49.5.627
  22. Kim, H.J., Yang, J.E., Lee, J.Y. and Sang. H.J. (2006) Leaching characteristics of heavy metals from abandoned mines wastes in the Namhan River shore. Korean Soc. Soil Ground Water Envt., Annual Meetings, p.201-207.
  23. Kim, K.R., Park, J.S., Kim, M.S., Koo, N.I., Lee, S.H., Lee, J.S., Kim, S.C., Yang, J.E. and J.G. Kim. (2010) Changes in heavy metal phytoavailablity by application of immobilizing agents and soil cover in upland soil nearby abandoned mining area subsequent metla uptake by red pepper. Soil Sci. Fert., v.43, p.864-871.
  24. Kim, K.R., Naidu, R. and Kim, J.G. (2010) Utilization of biosolid for enhanced heavy metal removal and biomass production in contaminated soils. Korean J. Soil Sci. Fert., v.43, p.436-442.
  25. Krishnamurti, G.S.R. and Naidu, R. (2000) Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Research, v.38, p.991-1004. https://doi.org/10.1071/SR99129
  26. Kumpiene, J., Lagerkvist, A. and Maurice, C. (2007) Stabilization of As, Cr, Cu, Pb and Zn in soils using amendments-A review. Waste Manage, v.28, p.215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  27. Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Huisman, W. (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg., v.19, p.209-227. https://doi.org/10.1016/S0961-9534(00)00032-5
  28. Mac L.Q., Komarc, K.M., Tuc, C., Zhang, W.n Cai, Y. and Kenelly, E.D. (2001) A fern that hyper accumulates arsenic. Nature, v.409, p.579-582. https://doi.org/10.1038/35054664
  29. Mehlich, A. (1984) Mehlich-3 soil test extractant: A modifrcation of Mehlich 2 extractant' Commun. Soil Sci. Plant Anal., v.15, p.1409-1416. https://doi.org/10.1080/00103628409367568
  30. Ministry of environment. (2016) Standard analytical methods for heavy metals in soils. http://www.law.go.kr/DRF/lawService.do?OC=jaa806&target=admrul&ID=2100000036851&type=HTML&mobileYn=.
  31. Miro, M., Estela, J.M. and Cerda, V. (2004) Application of flowing stream techniques to water analysis Part III. Metal ions: Alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis. Talanta, v.63, p.201-223. https://doi.org/10.1016/j.talanta.2003.10.047
  32. MIRECO. (2019) 2018 YEAR BOOK OF MIRECO STATISTICS MINE RECLAMATION CORP. Wonjusi, Kangwon-do, 354p.
  33. Moreno, F.N., Anderson, C.W.N., Stewart, R.B. and Robinson, B.H. (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ. Pollut., v.136, p.341-352. https://doi.org/10.1016/j.envpol.2004.11.020
  34. Nagendran, R., Selvam, A., Joseph, K. and Chiemchaisri, C. (2006) Phytoremediation and rehabilitation of minicipal soild waste landfills and dump sites: A brief review, Waste Manage, v.26, p.1357-1369. https://doi.org/10.1016/j.wasman.2006.05.003
  35. Nsanganwimana, F., Pourrut, B., Mench, M. and Douay, F. (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage, v.14, p.123-134 https://doi.org/10.1016/j.jenvman.2014.04.027
  36. Oh, S.J., Kim, S.C., Kim, T.H., Yeon, K.H. Lee, J.S. and Yang. J.E. (2011) Determining kinetic parameters and stabilization efficiency of heavy metals with various chemical amendments. Soil Sci. Fert., v.44, p.1063-1070.
  37. Oh, S.J., Kim, S.C., Kim, R.Y., Ok, Y.S., Yun, H.S. Oh, S.M. Lee, J.S. and Yang, J.E. (2012) Change of bioavailability in heavy metal contaminated soil by chemical amendment. Soil Sci. Fert., v.45, p.973-982.
  38. Ok, Y.S., Kim, J.G. Yang, J.E., Kim, H.J., Yoo, K.Y., Park, C.J. and Chung, D.Y. (2004) Phytoremediation of heavy metal contaminated soil using transgenic plants. Korean J. Soi. Sci. Fert., v.37, p.396-406.
  39. Panayotova, M. and Velikov, B. (2002) Kinetics of heavy metal ions removal by use of natural zeolite. J. Environ. Sci. Health, v.37, p.139-147. https://doi.org/10.1081/ESE-120002578
  40. Park, J.H., Panneerselvam, P., Lamb, D. Choppala, G. and Bolan, N.S. (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater., v.185, p.549-574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  41. Park, J.Y., Kim, J.Y., Lee, B.T., Kim, K.W. and Lee, J.S. (2010) Enhanced Phytoremediation by Echinochloa crus-galli in Arsenic Contaminated Soil in the Vicinity of the Abandeoned Mine. Econ. Environ. Goel., v.43, p.101-107.
  42. Pulford, I.D. and Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees-A review. Environ. Int., v.29, p.529-540. https://doi.org/10.1016/S0160-4120(02)00152-6
  43. Rezvani, M. and Zaefarian, F. (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. AJAE, v.2, p.114-119.
  44. Ross, S.M. 1994. Toxic Metals in Soil-Plant System. John Wiliy and Sons Ltd. New York, 469p.
  45. Shin, S.G., Park, J.H., Jeon, J.O., Yun, T.L. and Yun, J.S. (2001) Effects of planting density on the growth fo Miscanthus sinensis var. purpurascens RENDLEin the flat bare land. J. Kor. Soc. People Plants Environ., v.4, p.15-20.
  46. Seo, S.W. Moon, S.G., Choi, C.M. and Park. Y.K. (2005) Concentration of Zn, Cu, and Pb in soils and accumulation of Its in Plants around Abandoned Mine Vicinity. Journal of Life Science, v.15, p.826-833. https://doi.org/10.5352/JLS.2005.15.5.826
  47. Song, Y.S., Moon, Y.H., Yu, G.D., Choi, I.S., Cha, Y.L. and Kim, K.S. (2018) Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea. Weed Turf. Sci., v.7, p.22-34.
  48. Souki, K.S.A., Louvel, B., Douay, F. and Pourrut, B. (2017) Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: Ex situ experiment. Appl. Soil. Ecol., v.115, p.44-52. https://doi.org/10.1016/j.apsoil.2017.03.002
  49. Vangronsveld, J., V.F. Assche, and H. Clijsters. 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Environ. Pollut., v.87, p.51-59. https://doi.org/10.1016/S0269-7491(99)80007-4
  50. Viana, D.G., Pires, F.R., Ferreira, A.D., F, F.B.E., De Carvalho, C.F.M., Bonomo, R. and Martins, L.F. (2021) Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on ohytoremediation of barium from a flooded contaminated soil. Chemosphere, v.262, 127869. https://doi.org/10.1016/j.chemosphere.2020.127869
  51. Walworth, J.L., Gavlak, R.G. and Panciera. M.T. (1992) Mehlich 3 extractant for determination of available B, Cu, Fe, Mn, and Zn in cryic Alaskan soils. Can. J. Soil. Sci., v.72, p.517-526. https://doi.org/10.4141/cjss92-043
  52. Wei, Z., Le, Q.V., Peng, W., Yang, Y., Yang, H., Gu, H., L, S.S. and S. C. (2021) A review on phytoremediation of contaminants in air, water and soil. J. Hazardous Materials, v.403, 123658. https://doi.org/10.1016/j.jhazmat.2020.123658
  53. Wong, M.H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, v.50, p.775-780. https://doi.org/10.1016/S0045-6535(02)00232-1
  54. Wu, Z.Z., Yang, J.Y., Zhang, Y.X., Wang, C.Q., Guo, S.S. and Yu, Y.Q. (2021) Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremedation. Ecotox. Envrion. Safe, v.207, 111297.
  55. Yang. J.E., Skousen. J.G. Ok. Y.S., Yoo, K.Y. and Kim, H.J. (2006) Reclamation of abandeoned coal min waste in Korea using lime cake by-products. Mine Water Environ., v.25, p.227-232. https://doi.org/10.1007/s10230-006-0137-z
  56. Yun, E.S., Park, S.H., Ko, J.Y., Jung, K.Y., Park, K.D. Hwang, J.B. and Park, C.Y. (2010) Vertical distribution of the heavy metal in paddy soils of below part at Gundong mine in milyang, Kora. Korean J. Soil Sci. Fert., v.43, p.468-473.
  57. Zub, H.W. and Brancourt-Hulmel, M. (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sust. Dev., v.30, p.201-214. https://doi.org/10.1051/agro/2009034