DOI QR코드

DOI QR Code

외란 관측기 기반의 BLDC 전동기 추종제어

Tracking Control of BLDC Motor Based on Disturbance Observer

  • 전용호 (중원대학교 항공정비학과) ;
  • 이신원 (중원대학교 컴퓨터공학과)
  • 투고 : 2020.08.28
  • 심사 : 2020.10.15
  • 발행 : 2020.10.31

초록

전동기의 수학적 모델 오차와 작용하는 외란을 고려하여 제어기를 설계하는 것이 강건하며 정밀한 제어 성능을 좌우한다. 강건하며 정밀한 제어를 위하여 기계적인 부분과 전기적인 부분의 외란 관측기를 설계하여 외란을 추정하고, 공칭 시스템으로 설계된 속도제어기와 전류 제어기에 나누어 적용하였다. 설계된 시스템의 제어 성능을 확인하고자 120 [W]급의 BLDC 전동기에 적용하여, 속도 추종제어의 결과 외란을 극복하고 정상상태 오차가 영으로 수렴하며, 점근적 안정한 결과를 확인할 수 있다.

When designing a controller, a motor can have robust and precise control performance only by considering the error of the motor's mathematical model and the disturbance acting on it. For robust and precise control, the mechanical and electrical disturbance observers were designed to estimate the disturbance, and applied to the speed controller and current controller designed as a nominal system. To confirm the control performance of the designed system, it is applied to a 120 [W] class BLDC motor, and the result of the speed tracking control overcomes disturbances, the steady state error converges to zero, and the asymptotically stable result can be confirmed.

키워드

참고문헌

  1. K. Ohnishi, "A new servo method in mechatronics," Trans. of Japanese Society of Electrical Engineers, vol. 107-D, 1987, pp. 83-86.
  2. J. Back and H. Shim, "Adding robustness to nominal output feedback controllers for uncertain nonlinear systems: A nonlinear version of disturbance observer," Automatica, vol. 44, no. 10, 2008, pp. 2528-2537. https://doi.org/10.1016/j.automatica.2008.02.024
  3. J. Back and H, Shim, "An inner-loop controller guaranteeing robust transient performance for uncertain MIMO nonlinear systems," IEEE Trans. on Automatic Control, vol. 54, no. 7, 2009, pp. 1601-1607. https://doi.org/10.1109/TAC.2009.2017962
  4. J. Kim, "A robust sensorless speed control of sensorless BLDC motor," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 4, 2008, pp. 266-275.
  5. H. Lee, W. Cho, and K. Lee, "Improved switching method for sensorless BLDC motor drive," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 2, 2010, pp. 164-170.
  6. Y-H. Jeon and M-H. Cho, "A Speed Control of BLDC Motor using Adaptive Back stepping Technique," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 8, 2014, pp. 899-905. https://doi.org/10.13067/JKIECS.2014.9.8.899
  7. J. Zhou and Y. Wang, "Adaptive backstepping speed controller design for a permanent magnet synchronous motor," Electric Power Applications IEE Proc. vol. 149, no. 2, 2002. pp. 165-172. https://doi.org/10.1049/ip-epa:20020187
  8. M. Ouassaid, M. Cherkaoui, and Y. Zidani, "A Nonlinear Speed Control for a PM Synchronous Motor Using an Adaptive Back -stepping Control Approach," IEEE Int. Conf. on Industrial Technology (ICIT), Hammamet, Tunisia, vol. 3, 2004, pp. 1287-1292.
  9. S. Rebouh, A. Kaddouri, R. Abdessemed, and A. Haddoun, "Adaptive Back stepping speed Control for a Permanent Magnet Synchronous Motor," Management and Service Science (MASS) 2011 Int. Conf., Wuhan, China, 2011, pp. 1-4.
  10. L. Yuan, H. Feng-you, and W. Feng "Nominal Model-Based Control for Permanent Magnet Synchronous Motor," 2009 Int. Conf. on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, vol. 2, 2009, pp. 343-346.
  11. S. Back, "A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, Aug. 2018, pp. 760.
  12. H. Kwon, "Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no.5, Oct. 2019, pp. 1009-1018.