DOI QR코드

DOI QR Code

항공용 레이다의 3차 고조파 믹서 설계에 대한 연구

A New Third-Order Harmonic Mixer Design for Microwave Airborne Radar

  • 고민호 (한화시스템 항공레이다팀) ;
  • 강세벽 (한화시스템 항공레이다팀)
  • 투고 : 2020.08.17
  • 심사 : 2020.10.15
  • 발행 : 2020.10.31

초록

본 연구는 주파수 체배기 이론을 이용하여 초고주파 항공용 레이다를 위한 3차 고조파 믹서 설계에 대한 연구이다. 기본 믹서 설계 방법과는 달리 주파수 체배기 이론을 이용하여 국부 주파수(LO)의 3차 고조파 성분이 최대가 되는 게이트 바이어스 전압을 선택하여 중간주파수(IF)에서 3차 고조파 혼합(mixing) 성분이 최대가 되도록 하였다. 제안한 고조파 믹서는 플라스틱 패키지의 상용 GaAs MESFET 소자를 이용하여 설계 및 제작하여 기존 초고주파 믹서의 높은 변환손실, 회로 복잡성, 높은 가격 및 제작 복잡도를 개선할 수 있었다. 제안한 설계 방법을 이용한 3차 고조파 믹서는 33 GHz ~ 36 GHz 대역에서 8 ~10 dB 변환손실 특성 및 0 dBm 선형성 (P1dB) 특성을 나타내었다.

In this paper, a third-order harmonic mixer is designed using frequency multiplier theory for the microwave airborne radar. Unlike the basic mixer design method, the gate bias voltage, at which the third-harmonic component of the Local frequency (LO) is the maximum, is selected using a frequency multiplier theory to maximize the third-harmonic mixing component at the intermediate frequency (IF). The proposed harmonic mixer was designed and manufactured using a commercial GaAs MESFET device in a plastic package, and it was possible to improve the high conversion loss, circuit complexity, high cost, and manufacturing complexity of the existing microwave mixer. The harmonic mixer using the proposed design method has a -8 ~ -10 dB conversion loss by pumping 11.5 GHz LO with a +5 dBm level when operating from 33.0 GHz to 36.0 GHz and the 1-dB gain compression point (P1dB) of 0 dBm.

키워드

참고문헌

  1. J. Na, D. Roh and D. Kim, "Fin-Line Balanced Mixer Design for Ku-band Tracking Radar Receiver," J. of the Korea Institute of Electronic Communication Science, vol. 13, no. 4, Aug. 2018, pp. 685-694. https://doi.org/10.13067/JKIECS.2018.13.4.685
  2. T. Y. Yum, Q. Xue, and C. H. Chan, "Novel sub-Harmonically Pumped Mixer Incorporating Dual-Band Quarter-Wave and In-Line Stub," IEEE MTT-S Internal Microwave Symp., vol. 1, Philadelphia, USA, 2003, pp. 87-90.
  3. P. Bernkopf and Y. Tajima, "A Monolithic Ka-Band Sub-Harmonically Pumped Frequency Converter," IEEE Microwave and millimeter-Wave Monolithic Circuits Symp., Boston, USA, 1991, pp. 43-46.
  4. K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, "A Millimeter-Wave Monolithic Sub-Harmonically Pumped Resistive Mixer," Int. Microwave Symp. vol. 2, Singapore, 1999, pp. 222-225.
  5. C. Rauscher, "High-frequency doubler operation of GaAs field effect transistors," IEEE Tans. Microwave Theory Tech., vol. MTT-31, no. 6, 1983, pp. 462-473. https://doi.org/10.1109/TMTT.1983.1131526
  6. E. O'ciardha, "Generic-device frequency multiplier analysis a unified approach," IEEE Trans. Microwave Theory Tech., vol. MTT-48, no. 7, July 2000, pp. 1134-1141. https://doi.org/10.1109/22.848496
  7. H. Fudem and E. C. Niehenke, "Novel millimeter wave active MMIC triplers," IEEE MTT-S Int. Microwave Symp. Digest, Vol.2, Baltimore, USA, May 1998, pp. 387-390.
  8. M. Fairburn, B. J. Minnis, and J. Neale, "A novel monolithic distributed mixer design," IEEE Colloquium on Microwave and Millimeter Wave Monolithic Integrated Circuits, London, UK, Nov. 1988, pp.13/1-13/6.
  9. J. Kim, I. Yoon, M. Go and H. Park, "Design and Implementation of Broadband RF Amplifier for Microwave Receiver," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 6, Jun. 2015, pp. 665-670. https://doi.org/10.13067/JKIECS.2015.10.6.665
  10. Y. H. Liew and J. Joe, "RF and IF ports Matching Circuit synthesis for a Simultaneous Conjugate-Matched Mixer Using Qualsi-Linear Analysis," IEEE Trans. Microwave Theory and Tech., vol. 50, no. 7, Sept. 2002, pp. 2056-2062. https://doi.org/10.1109/TMTT.2002.802316
  11. Y. L. Kok, M. Ahma, H. Wang, B. R. Allen, and T. Lin, "A Ka-Band Monolithic Single-Chip Transceiver Using Sub-harmonic Mixer," IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Baltimore, USA, 1998, pp. 309-311.