DOI QR코드

DOI QR Code

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid (Faculty of Applied Sciences, Synthesis and Catalysis Laboratory LSCT, University of Tiaret) ;
  • Karas, Abdelkader (Faculty of Applied Sciences, Synthesis and Catalysis Laboratory LSCT, University of Tiaret) ;
  • Zidour, Mohamed (Laboratory of Geomatics and Sustainable Development, University of Tiaret)
  • 투고 : 2019.12.19
  • 심사 : 2020.09.11
  • 발행 : 2020.10.25

초록

This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

키워드

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Al-Furjan, M.S.H., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic oscillation of a multi-scalehybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252, 112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  3. Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020b), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 2020, 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  4. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020c), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 2020, 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  5. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 2020, 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  6. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  7. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, Int. J., 26(2), 185-201. http://dx.doi.org/10.12989/cac.2020.26.2.185.
  8. Amara, K., Tounsi, A. and Mechab, I. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.
  9. Arefi, M., Bidgoli, E.M R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.
  10. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., Int. J., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871.
  11. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  12. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., Int. J., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  13. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2019), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  14. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  15. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, EA. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., Int. J., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  16. Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  17. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  18. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  19. Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x.
  20. Cornwell, C.F. and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid State Commun., 101(8), 555-558. https://doi.org/10.1103/PhysRevB.61.3078.
  21. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., Int. J., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  22. Dresselhaus, M.S. and Avouris, P. (2001), Carbon Nanotubes, Springer, Berlin, Germany. https://doi.org/10.1007/3-540-39947-X_1.
  23. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051.
  24. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. http://dx.doi.org/10.12989/anr.2019.7.1.039.
  25. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  26. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  27. Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order $C_0$ mixed beam element for FGM beams analysis", Compos. Part B Eng., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
  28. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  29. Hajlaoui, A., Chebbi, E. and Dammak, F. (2019a), "Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT", Thin-Wall. Struct., 144, 106254. https://doi.org/10.1016/j.tws.2019.106254.
  30. Hajlaoui, A., Chebbi, E., Wali, M. and Dammak, F. (2019b), "Static analysis of carbon nanotube-reinforced FG shells using an efficient solid-shell element with parabolic transverse shear strain", Eng. Comput., 37(3), 823-849. https://doi.org/10.1108/EC-02-2019-0075.
  31. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  32. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  33. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
  34. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  35. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., Int. J., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  36. Jin, Y. and Yuan, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/S0266-3538(03)00074-5.
  37. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  38. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  39. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 99-107. http://dx.doi.org/10.1108/AEAT-11-2013-0202.
  40. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., Int. J., 34(2), 279-288. http://dx.doi.org/10.12989/scs.2020.34.2.279.
  41. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. http://dx.doi.org/10.12989/sss.2017.20.5.595.
  42. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., Int. J., 6(4), 349-361. http://dx.doi.org/10.12989/amr.2017.6.4.349.
  43. Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure-using FEM", IOP Conf. Series Mater. Sci. Eng., 338(1), 012035. http://dx.doi.org/10.1088/1757-899X/338/1/012035.
  44. Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mech., 228(4), 1303-1319. https://doi.org/10.1007/s00707-016-1781-4.
  45. Kiani, Y., Bagherizadeh, E. and Eslami, M.R. (2011), "Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (three approximate analytical solutions)", Zeitschr. Angwe. Math. Mech., 91(7), 581-593. https://doi.org/10.1002/zamm.201000184.
  46. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  47. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 1099636217731071. https://doi.org/10.1177/1099636217731071.
  48. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034.
  49. Mallek, H., Jrad, H., Algahtani, A., Wali, M. and Dammak, F. (2019a), "Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers", Comput. Methods Appl. Mech. Eng., 347, 679-699. https://doi.org/10.1016/j.cma.2019.01.001.
  50. Mallek, H., Jrad, H., Wali, M. and Dammak, F. (2019b), "Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory", Eng. Comput., 2019, 1-19. https://doi.org/10.1007/s00366-019-00891-1.
  51. Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2020), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26(13-14), 1157-1172. https://doi.org/10.1177/1077546319892753.
  52. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  53. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.
  54. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. http://dx.doi.org/10.1016/j.ijmecsci.2017.08.057.
  55. Mehar, K., Panda, S.K. and Patle, B.K. (2018a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. http://dx.doi.org/10.1002/pc.24409.
  56. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018b), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  57. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  58. Mehar, K., Mishra, P.K. and Panda, S.K. (2020a), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 2020, 1-13. http://dx.doi.org/10.1080/15376494.2020.1725193.
  59. Mehar, K., Panda, S.K. and Sharma, N. (2020b), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. http://dx.doi.org/10.1016/j.engstruct.2020.110444.
  60. Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Math. Appl., 79(11), 3160-3187. https://doi.org/10.1016/j.camwa.2020.01.015.
  61. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., Int. J., 36(3), 355-367. http://dx.doi.org/10.12989/scs.2020.36.3.355.
  62. Nikbakht, S., Kamarian, S. and Shakeri, M. (2019), "A review on optimization of composite structures part II: Functionally graded materials", Compos. Struct., 214, 83-102. https://doi.org/10.1016/j.compstruct.2019.01.105.
  63. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. http://dx.doi.org/10.1007/s40819-015-0035-9.
  64. Rafii-Tabar, H. (2004), "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes", Phys. Rep., 390(4-5), 235-452. https://doi.org/10.1016/j.physrep.2003.10.012.
  65. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  66. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, Int. J., 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  67. Ru, C.Q. (2000), "Elastic buckling of single-walled carbon nanotube ropes under high pressure", Phys. Rev. B, 62(15), 10405. https://doi.org/10.1103/PhysRevB.62.10405.
  68. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft-core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  69. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  70. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  71. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundations", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  72. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  73. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  74. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  75. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  76. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.
  77. Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Proc. Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  78. Wang, X. and Cai, H. (2006), "Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes", Acta Mater., 54(8), 2067-2074. https://doi.org/10.1016/j.actamat.2005.12.039.
  79. Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
  80. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  81. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. http://dx.doi.org/10.12989/anr.2018.6.2.163.
  82. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessel. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  83. Zghal, S. and Dammak, F. (2020), "Vibration behavior of beams made of functionally graded materials by using a mixed formulation", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234(18), 3650-3666. https://doi.org/10.1177/0954406220916533.
  84. Zghal, S., Frikha, A. and Dammak, F. (2018), "Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement", Eng. Struct., 158, 95-109. https://doi.org/10.1016/j.engstruct.2017.12.017.
  85. Zghal, S., Ataoui, D. and Dammak, F (2020), "Static bending analysis of beams made of functionally graded porous materials, Mech. Based Des. Struct. Mach., 2020, 1-18. https://doi.org/10.1080/15397734.2020.1748053.
  86. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033.
  87. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  88. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H. A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51(1), 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021.