DOI QR코드

DOI QR Code

Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects

  • Heidari, Farshad (Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University) ;
  • Afsari, Ahmad (Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University) ;
  • Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2020.01.14
  • Accepted : 2020.08.14
  • Published : 2020.10.25

Abstract

In this research, beside presenting real images of produced Functionally Graded Carbon Nanotube-Reinforced Composites (FG-CNTRCs) and a brief review of the synthesis method of FG-CNTRCs, static and buckling analysis of FG-CNTRC with piezoelectric layers are investigated. It is assumed that the material properties of FG-CNTRC are varied through the thickness direction using four different distributions of Carbon Nanotubes (CNTs). To capture the size effects, nonlocal elasticity theory proposed by A.C. Eringen is also adopted in our model. One of the topics in our paper is using a higher order theory with eight different displacement fields and comparing their results with each other. To solve the governing equations, an analytical method is used to find the deflections and critical buckling loads of FG-CNTRCs. To show the accuracy of present methodology, our results are compared with the results of simply supported rectangular nano plates available in the literature. In this research, the effects of aspect ratio, piezoelectric layer and nonlocal parameter are also studied. It is hoped that this work leads to more accurate models on FG-CNTRC.

Keywords

References

  1. Al-Nemrawi, N.K., AbuAlSamen, M.M. and Alzoubi, K.H. (2019), "Awareness about nanotechnology and its applications in drug industry among pharmacy students", Curr. Pharm. Teach. Learn., 12(3), 274-280. https://doi.org/10.1016/j.cptl.2019.12.003.
  2. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  3. Amanullah, M., AlArfaj, M.K. and Al-abdullatif, Z.A. (2011), "Preliminary test results of nano-based drilling fluids for oil and gas field application", Proceedings of the SPE/IADC Drilling Conference and Exhibition: Society of Petroleum Engineers, Amsterdam, Netherlands, January. https://doi.org/10.2118/139534-MS.
  4. Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv. Otd. Tech. Nauk. An. SSSR., 5(5), 69-77.
  5. Amraei, J., Jam, J.E., Arab, B. and Firouz-Abadi, R.D. (2019), "Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites", Polym. Compos., 40(2), 1219-1234. https://doi.org/10.1002/pc.24950.
  6. Arani, A.G., Maraghi, Z.K. and Arani, H.K. (2016), "Orthotropic patterns of Pasternak foundation in smart vibration analysis of magnetostrictive nanoplate", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 230(4), 559-572. https://doi.org/10.1177/0954406215579929.
  7. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.
  8. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  9. Asmatulu, R., Nguyen, P. and Asmatulu, E. (2013), Nanotechnology Safety, Elsevier, Burlington, USA. https://doi.org/10.1016/B978-0-444-59438-9.00005-9.
  10. Aurojyoti, P., Raghu, P., Rajagopal, A. and Reddy, J.N. (2019), "An n-sided polygonal finite element for nonlocal nonlinear analysis of plates and laminates", Int. J. Numer. Methods Eng., 120(9), 1071-1107. https://doi.org/10.1002/nme.6171.
  11. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  12. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  13. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  14. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  15. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  16. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  17. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  18. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., Int. J., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  19. Demir, E., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15(1), 57-65. https://doi.org/10.3390/mca15010057.
  20. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.
  21. Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A Solids, 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024.
  22. Ebrahimi, F. and Dabbagh, A. (2019), "Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model", Compos. Part B Eng., 173, 106955. https://doi.org/10.1016/j.compositesb.2019.106955.
  23. Elkhatib, E., Mahdy, A., Mahmoud, A. and Moharem, M. (2019), "Efficient removal of Cd (II) from contaminated water and soils using nanoparticles from nitrogen fertilizer industry waste", J. Environ. Health Sci. Eng., 17, 1153-1161. https://doi.org/10.1007/s40201-019-00429-z.
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  25. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2010), "Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites", Compos. Sci. Technol., 70(16), 2237-2241. https://doi.org/10.1016/j.compscitech.2010.05.004
  26. Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.
  27. Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer, New York, USA.
  28. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
  29. Han, H., Hantschel, T., Strakos, L., Vystavel, T., Baryshnikova, M., Mols, Y., Kunert, B., Langer, R., Vandervorst, W. and Caymax, M. (2019), "Application of electron channeling contrast imaging to 3D semiconductor structures through proper detector configurations", Ultramicroscopy, 210, 112928. https://doi.org/10.1016/j.ultramic.2019.112928.
  30. Hanus, M.J. and Harris, A.T. (2013), "Nanotechnology innovations for the construction industry", Prog. Mater. Sci., 58(7), 1056-1102. https://doi.org/10.1016/j.pmatsci.2013.04.001.
  31. Hosseini-Hashemi, S., Arpanahi, R.A., Rahmanian, S. and Ahmadi-Savadkoohi, A. (2019), "Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity", Eur. J. Mech. A Solids, 74, 440-448. https://doi.org/10.1016/j.euromechsol.2019.01.002.
  32. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  33. Ji, X., Li, X., Yu, H., Zhang, W. and Dong, H. (2019), "Study on the carbon nanotubes reinforced nanocomposite coatings", Diam. Relat. Mater., 91, 247-254. https://doi.org/10.1016/j.diamond.2018.11.027.
  34. Kaczkowski, Z. (1968), Plates-Statical Calculations, Arkady, Warsaw, Poland.
  35. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  36. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  37. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  38. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R. and Tornabene, F. (2019b), "Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750.
  39. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019c), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
  40. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019d), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", Int. J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.
  41. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019e), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451.
  42. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  43. Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69(3-4), 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019.
  44. Kong, X. and Ohadi, M. (2010), "Applications of micro and nano technologies in the oil and gas industry-overview of the recent progress", Proceedings of the International Petroleum Exhibition and Conference: Society of Petroleum Engineers, Abu Dhabi, UAE, January. https://doi.org/10.2118/138241-MS.
  45. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  46. Li, Y.S. (2014), "Buckling analysis of magnetoelectroelastic plate resting on Pasternak elastic foundation", Mech. Res. Commun., 56, 104-114. https://doi.org/10.1016/j.mechrescom.2013.12.007.
  47. Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097.
  48. Li, G.Y., Wang, P.M. and Zhao, X. (2007), "Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites", Cement Concrete Compos., 29(5), 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011.
  49. Li, Z., Nambiar, S., Zheng, W. and Yeow, J.T.W. (2013), "PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications", Mater. Lett., 108, 79-83. https://doi.org/10.1016/j.matlet.2013.06.030.
  50. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
  51. Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
  52. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  53. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.
  54. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E. A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  55. Megahed, A.A.E.W. and Megahed, M. (2017), "Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates", Iran. Polym. J., 26(9), 673-680. https://doi.org/10.1007/s13726-017-0552-y.
  56. Mirzavand, B. and Eslami, M.R. (2011), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta Mech., 218(1-2), 87-101. https://doi.org/10.1007/s00707-010-0402-x.
  57. Moghadam, A.D., Omrani, E., Menezes, P.L. and Rohatgi, P.K. (2015), "Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review", Compos. Part B Eng., 77, 402-420. https://doi.org/10.1016/j.compositesb.2015.03.014.
  58. Nami, M.R. and Janghorban, M. (2014a), "Bending analysis of rectangular nanoplates based on two variable refined plate theory using strain gradient elasticity theory", Proceedings of the 22nd Annual International Conference on Mechanical Engineering-ISME2014, , Ahvaz, Iran, April.
  59. Nami, M.R. and Janghorban, M. (2014b), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
  60. Nami, M.R. and Janghorban, M. (2015a), "Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory", J. Mech. Sci. Technol., 29(6), 2423-2426. https://doi.org/10.1007/s12206-015-0539-6.
  61. Nami, M.R. and Janghorban, M. (2015b), "Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory", J. Brazilian Soc. Mech. Sci. Eng., 37(1), 313-324. https://doi.org/10.1007/s4043.
  62. Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
  63. Nardi, T., Leterrier, Y., Karimi, A. and Manson, J.A.E. (2014), "A novel synthetic strategy for bioinspired functionally graded nanocomposites employing magnetic field gradients", RSC Adv., 4(14), 7246-7255. https://doi.org/10.1039/C3RA46731G.
  64. Nardi, T., Hammerquist, C., Nairn, J.A., Karimi, A., Manson, J.A.E. and Leterrier, Y. (2015), "Nanoindentation of functionally graded polymer nanocomposites: Assessment of the strengthening parameters through experiments and modeling", Front. Mater., 2, 57. https://doi.org/10.3389/fmats.2015.00057.
  65. Panc, V. (1975), Theories of Elastic Plates, Academia, Prague, Czech Republic.
  66. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nano-technology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
  67. Phung-Van, P., Abdel-Wahab, M., Liew, KM., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
  68. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E Low Dimens. Syst. Nanostruct., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004.
  69. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, A.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., Int. J., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  70. Rad, A.B. (2018), "Static analysis of non-uniform 2D functionally graded auxetic-porous circular plates interacting with the gradient elastic foundations involving friction force", Aerosp. Sci. Technol., 76, 315-339. https://doi.org/10.1016/j.ast.2018.01.036.
  71. Raghu, P., Preethi, K., Rajagopal, A. and Reddy, J.N. (2016), "Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects", Compos. Struct., 139, 13-29. https://doi.org/10.1016/j.compstruct.2015.11.068.
  72. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  73. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  74. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  75. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, Int. J., 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  76. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.
  77. Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049.
  78. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  79. She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
  80. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  81. Shiva, K., Raghu, P., Rajagopal, A. and Reddy, J.N. (2019), "Nonlocal buckling analysis of laminated composite plates considering surface stress effects", Compos. Struct., 226, 111216. https://doi.org/10.1016/j.compstruct.2019.111216.
  82. Shokrieh, M.M. and Moshrefzadeh-Sani, H. (2016), "On the constant parameters of Halpin-Tsai equation", Polymer, 106, 14-20. https://doi.org/10.1016/j.polymer.2016.10.049.
  83. Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", Int. J. Mech. Sci., 131, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053.
  84. Srividhya, S., Basant, K., Gupta, R.K., Rajagopal, A. and Reddy, J.N. (2018a), "Influence of the homogenization scheme on the bending response of functionally graded plates", Acta Mech., 229(10), 4071-4089. https://doi.org/10.1007/s00707-018-2223-2.
  85. Srividhya, S., Raghu, P., Rajagopal, A. and Reddy, J.N. (2018b), "Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory", Int. J. Eng. Sci., 125, 1-22. https://doi.org/10.1016/j.ijengsci.2017.12.006.
  86. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  87. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  88. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  89. Vellingiri, K., Ramachandran, T. and Senthilkumar, M. (2013), "Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry", Nanosci. Nanotechnol. Lett., 5(5), 519-529. https://doi.org/10.1166/nnl.2013.1575.
  90. Wang, Y.Z. and Li, F.M. (2012), "Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects", Mech. Res. Commun., 41, 44-48. https://doi.org/10.1016/j.mechrescom.2012.02.008.
  91. Wu, Q., Chen, H. and Gao, W. (2019), "Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams", Eng. Comput., 36, 1739-1750. https://doi.org/10.1007/s00366-019-00794-1.
  92. Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y. and Wei, F. (2013), "The road for nanomaterials industry: A review of carbon nanotube production, post-treatment and bulk applications for composites and energy storage", Small, 9(8), 1237-1265. https://doi.org/10.1002/smll.201203252.
  93. Zhu, J., Peng, H., Rodriguez-Macias, F., Margrave, J.L., Khabashesku, V.N., Imam, A.M., Lozano, K. and Barrera, E.V. (2004), "Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes", Adv. Funct. Mater., 14(7), 643-648. https://doi.org/10.1002/adfm.200305162.
  94. Zhu, P., Lei, Z.X. and Liew, K.M. (2012a), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  95. Zhu, Z., Garcia-Gancedo, L., Flewitt, A.J., Xie, H., Moussy, F. and Milne, W.I. (2012b), "A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene", Sensors, 12(5), 5996-6022. https://doi.org/10.3390/s120505996

Cited by

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157