DOI QR코드

DOI QR Code

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University) ;
  • Vu, Quang-Viet (Faculty of Civil Engineering, Vietnam Maritime University) ;
  • Papazafeiropoulos, George (Department of Structural Engineering, National Technical University of Athens) ;
  • Kong, Zhengyi (School of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Truong, Viet-Hung (Faculty of Civil Engineering, Thuyloi University)
  • 투고 : 2019.07.24
  • 심사 : 2020.10.09
  • 발행 : 2020.10.25

초록

In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

키워드

참고문헌

  1. Alves, V., Cury, A., Roitman, N., Magluta, C. and Cremona, C. (2015), "Structural modification assessment using supervised learning methods applied to vibration data", Eng. Struct., 99, 439-448. https://doi.org/10.1016/j.engstruct.2015.05.003.
  2. Amrani, Y., Lazaar, M. and Kadiri, K. (2018), "Random forest and support vector machine based hybrid approach to sentiment analysis", Procedia Computer Science, 127, 511-520. https://doi.org/10.1016/j.procs.2018.01.150.
  3. Ataei, N. and Padgett, J.E. (2015), "Fragility surrogate models for coastal bridges in hurricane prone zones", Eng. Struct., 103, 203-213. https://doi.org/10.1016/j.engstruct.2015.07.002. '
  4. Breiman, L. (1996), "Bagging predictors", Machine Learning, 26(2), 123-140.
  5. Breiman, L., Freidman, J., Olshen, R. and Stone, C. (1984), "Classification and regression trees", Belmont (CA), Wadsworth.
  6. Bulut, A., Sing, A.K., Shin, P., Fountain, T., Jasso, H. and Yan, L., Elgamal, A. (2005), "Real-time nondestructive structural health monitoring using support vector machines and wavelets", SPIE 5770, Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring, 180. UC Santa Barbara, Santa Barbara.
  7. Buntine, W. and Niblett, T. (1992), "A further comparison of splitting rules for decision tree induction", Machine Learning, 8(1), 75-86. https://doi.org/10.1007/BF00994006
  8. Chen, W.F. and Lui, E.M. (1992), "Stability design of steel frames", Boca Raton, FL: CRC Press.
  9. Chen, W.F. and Lui, E.M. (1987), "Structural stability: theory and implementation", Elsevier, Amsterdam.
  10. Chen, W.F., Kim, S.E. and Choi, S.H. (2001), "Practical secondorder inelastic analysis for three-dimensional steel frames", Steel Struct., 1(3), 213-223. https://doi.org/10.12989/scs.2001.1.2.213
  11. Chiorean, G.C. (2017), "Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 136, 547-579. https://doi.org/10.1016/j.engstruct.2017.01.040.
  12. Dong, Y.F., Li, Y.M., Lai, M. and Xiao, M.K. (2008), "Nonlinear structural response prediction based on support vector machines", J. Sound Vib., 311(3-5), 886-897. https://doi.org/10.1016/j.jsv.2007.09.054.
  13. Dube, T., Mutanga, O., Adam, E. and Ismail, R. (2014), "Intra-and-tnter species biomass prediction in a plantation forest: testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advanced machine learning Aalgorithms", Sensors, 14, 15348-15370. https://doi.org/10.3390/s140815348.
  14. Friedman, J.H. (1999), "Greedy function approximation: a gradient boosting machine", Technical Report, Department of Statistics, Stanford University.
  15. Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Annal. Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451
  16. Friedman, J.H. (2002), "Stochastic gradient boosting", Comput. Stat. Data Anal., 38, 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
  17. Gong, L., Wang, C., Wu, F., Zhang, J., Zhang, H. and Li, Q. (2016), "Earthquake-induced building damage detection with post-event sub-meter vhr terrasar-X staring spotlight imagery", Remote Sens, 8, 887. https://doi.org/10.3390/rs8110887.
  18. Gulgec, N.S., Takac, M. and Pakzad, S.N. (2017), "Structural damage detection using convolutional neural networks", Model Valid Uncertain Quantif, 3, 331-337. https://doi.org/10.1007/978-3-319-54858-6_33.
  19. Hasni, H., Alavi, A.H., Lajnef, N., Abdelbarr, M., Masri, S.F. and Chakrabartty, S. (2017), "Self-powered piezo-floating-gate sensors for health monitoring of steel plates", Eng. Struct., 148, 584-601. https://doi.org/10.1016/j.engstruct.2017.06.063.
  20. Hurtado, J.E. and Alvarez, D.A. (2003), "Classification approach for reliability analysis with stochastic finiteelement modeling", J. Struct. Eng., 129(8),1141-1149. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1141).
  21. Karina, C.N.N, Chun, P.J. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
  22. Kim, S.E. and Choi, S.H. (2001), "Practical advanced analysis for semi-rigid space frames", Int. J. Solids Struct., 38(50-51), 9111-131. https://doi.org/10.1016/S0020-7683(01)00141-X.
  23. Kim, S.E. and Lee, J.H. (2002), "Improved refined plastic-hinge analysis accounting for lateral torsional buckling", J. Constr. Steel Res., 58(11), 1431-1453. https://doi.org/10.1016/S0143-974X(01)00068-2.
  24. Kim, S.E. and Thai, H.T. (2010), "Nonlinear inelastic dynamic analysis of suspension bridges", Eng. Struct., 32(12), 3845-3856. https://doi.org/10.1016/j.engstruct.2010.08.027.
  25. Kordjazi, A., Pooya Nejad, F. and Jaksa, M.B. (2014), "Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data", Comput. Geotech., 55, 91-102. https://doi.org/10.1016/j.compgeo.2013.08.001.
  26. Kurtoglu, A. (2018), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct., 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.
  27. Laory, I., Trinh, T.N., Smith, I.F. and Brownjohn, J.M. (2014), "Methodologies for predicting natural frequency variation of a suspension bridge", Eng. Struct., 80, 211-221. https://doi.org/10.1016/j.engstruct.2014.09.001.
  28. Lee, S., Ha, J., Zokhirova, M., Moon, H. and Lee, J. (2018), "Background information of deep learning for structural engineering", Arch. Comput. Method. Eng., 25, 121-129. https://doi.org/10.1007/s11831-017-9237-0.
  29. Li, H.S., Lu, Z.Z. and Yue, Z.F. (2006), "Support vector machine for structural reliability analysis", Appl. Math. Mech., (English Edition), 27(10), 1295-1303. https://doi.org/10.1007/s10483-006-1001-z.
  30. Li, L. and Zhao, Z. (2019), "Application of machine learning in optimized distribution of dampers for structural vibration control", Earthq. Struct., 16(6), 679-690. https://doi.org/10.12989/eas.2019.16.6.679.
  31. Liu, W.Z. and White, A.P. (1994), "The importance of attribute selection measures in decision tree induction", Machine Learning, 15 (1), 25-41. https://doi.org/10.1023/A:1022609119415.
  32. Mingers, J. (1989a), "An empirical comparison of selection measures for decision-tree induction", Machine Learning, 3 (4), 319-342. https://doi.org/10.1007/BF00116837
  33. Mingers, J. (1989b), "An empirical comparison of pruning methods for decision-tree induction", Machine Learning, 4(2), 227-243. https://doi.org/10.1023/A:1022604100933
  34. Nguyen, P.C. and Kim, S.E. (2016), "advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method", Steel Compos. Struct., 21(5), 1121-1144. https://doi.org/10.12989/scs.2016.21.5.1121.
  35. Oishi, A. and Yagawa, G. (2017), "Computational mechanics enhanced by deep learning", Comput. Method. Appl. M., 327, 327-351. https://doi.org/10.1016/j.cma.2017.08.040.
  36. Orbison, J.G., McGuire, W. and Abel, J.F. (1982), "Yield surface applications in nonlinear steel frame analysis", Comput. Method. Appl. M., 33(1-3), 557-573. https://doi.org/10.1016/0045-7825(82)90122-0.
  37. Reich, Y. (1997), "Machine learning techniques for civil engineering problems", Microcomput. Civil Eng., 12, 295-310. https://doi.org/10.1111/0885-9507.00065
  38. Rocco, C.M. and Moreno, J.A. (2002), "Fast Monte Carlo reliability evaluation using support vector machine", Reliab. Eng. Syst. Saf., 76(3), 237-243. https://doi.org/10.1016/S0951-8320(02)00015-7.
  39. Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
  40. Sarkar, S., Reddy, K.K., Giering, M. and Gurvich, M.R. (2016), "Deep learning for structural health monitoring: a damage characterization application", Annual conference of the prognostics and health management society, Colorado, USA, October.
  41. Satish, B.S., Yogesh, K., Anirban, G. and Sauvik B. (2013), "Structural health monitoring of a cantilever beam using support vector machine", Int. J. Adv. Struct. Eng., 5, 1-7. https://doi.org/10.1186/2008-6695-5-2
  42. Serban, A. (2017), "Failure estimation of the composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.
  43. Shan, D., Fu, C. and Li, C. (2012), "Experimental investigation of damage identification for continuous railway bridges", J. Modern Transportation, 20, 1-9. https://doi.org/10.1007/BF03325770
  44. Tang, H.S., Xue, S.T., Chen, R. and Sato, T. (2006), "Online weighted LS-SVM for hysteretic structural system identification", Eng. Struct., 28(12), 1728-1735. https://doi.org/10.1016/j.engstruct.2006.03.008.
  45. Thai, H.T. and Kim, S.E. (2009), "Practical advanced analysis software for nonlinear inelastic analysis of space steel structures", Adv. Eng. Software, 40(9), 786-797. ps://doi.org/10.1016/j.advengsoft.2009.02.001.
  46. Thai, H.T. and Kim, S.E. (2011), "Nonlinear inelastic time-history analysis of truss structures", J. Constr. Steel Res., 67(12), 1966-1972. https://doi.org/10.1016/j.jcsr.2011.06.015.
  47. The, L.H. and Clark, M.J. (1999), "Plastic-zone analysis of 3D steel frames using beam elements", J. Struct. Eng. - ASCE, 125(11),1328-1337. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1328),
  48. Thirumalaiselvi, A., Verma, M., Anandavalli, N. and Rajasankar, J. (2018), "Response prediction of laced steel-concrete composite beams using machine learning algorithms", Struct. Eng. Mech., 66(3), 399-409. https://doi.org/10.12989/sem.2018.66.3.399.
  49. Torkamani, M.A.M. and Sonmez, M. (2001), "Inelastic large deflection modeling of beam-columns", J. Struct. Eng. -ASCE, 127(8), 876-887. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(876).
  50. Uddin, M.A., Sheikh, A.H., Brown, D., Bennett, T. and Uy, B. (2018), "Geometrically nonlinear inelastic analysis of steel- concrete composite beams with partial interaction using a higher-order beam theory", Int. J. Nonlinear Mech., 100, 34-47. https://doi.org/10.1016/j.ijnonlinmec.2018.01.002.
  51. Vapnik, V.N. (1995), The Nature of Statistical Learning Theory, Springer, New York.
  52. Vapnik, V.N. (1999), "An overview of statistical learning theory", IEEE T. Neural Networks, 10, 988-999. DOI: 10.1109/72.788640.
  53. Worden, K. and Lane, A.J. (2001), "Damage identification using support vector machines", Smart Mater. Struct. 10, 540-547. https://doi.org/10.1088/0964-1726/10/3/317
  54. Worden, K. and Manson, G. (2007), "The application of machine learning to structural health monitoring", Philos. T. Royal Soc. London Series A, 365, 515-537. https://doi.org/10.1098/rsta.2006.1938.
  55. Xu, Q., Xiong, Y., Dai, H., Kumari, K.M., Xu, Q., Ou, H.Y. and Wei, D.Q. (2017), "PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm", J. Theor. Biology, 417, 1-7. https://doi.org/10.1016/j.jtbi.2017.01.019.
  56. Yang, I.T. and Hsieh, Y.H. (2013), "Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization", Eng. with Comput., 29, 151-163. https://doi.org/10.1007/s00366-011-0251-9.
  57. Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J, 28(12), 2110-2116. https://doi.org/10.2514/3.10529.
  58. Zhang, F., Du, B. and Zhang, L.P. (2016), "Scene classification via a gradient boosting random convolutional network framework", IEEE T. Geosci. Remote Sens., 54, 1793-1802. OI: 10.1109/TGRS.2015.2488681.
  59. Zhang, J. and Sato, T. (2006), "Non-linear hysteretic structural identification by utilizing on-line support vector regression", Doboku Gakkai Ronbunshuu A, 62, 312-322. https://doi.org/10.2208/jsceja.62.312
  60. Zhang, J., Sato, T. and Iai, S. (2007), "Novel support vector regression for structural system identification", Struct. Control Health Monit., 14, 609-626. https://doi.org/10.1002/stc.175.
  61. Zhang, Y. and Haghani, A. (2015), "A gradient boosting method to improve travel time prediction", T. Res. Part C: Emerging Technologies, 58, Part B, 308-324. https://doi.org/10.1016/j.trc.2015.02.019.

피인용 문헌

  1. Predicting the splitting tensile strength of concrete using an equilibrium optimization model vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.081