References
- Alves, V., Cury, A., Roitman, N., Magluta, C. and Cremona, C. (2015), "Structural modification assessment using supervised learning methods applied to vibration data", Eng. Struct., 99, 439-448. https://doi.org/10.1016/j.engstruct.2015.05.003.
- Amrani, Y., Lazaar, M. and Kadiri, K. (2018), "Random forest and support vector machine based hybrid approach to sentiment analysis", Procedia Computer Science, 127, 511-520. https://doi.org/10.1016/j.procs.2018.01.150.
- Ataei, N. and Padgett, J.E. (2015), "Fragility surrogate models for coastal bridges in hurricane prone zones", Eng. Struct., 103, 203-213. https://doi.org/10.1016/j.engstruct.2015.07.002. '
- Breiman, L. (1996), "Bagging predictors", Machine Learning, 26(2), 123-140.
- Breiman, L., Freidman, J., Olshen, R. and Stone, C. (1984), "Classification and regression trees", Belmont (CA), Wadsworth.
- Bulut, A., Sing, A.K., Shin, P., Fountain, T., Jasso, H. and Yan, L., Elgamal, A. (2005), "Real-time nondestructive structural health monitoring using support vector machines and wavelets", SPIE 5770, Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring, 180. UC Santa Barbara, Santa Barbara.
- Buntine, W. and Niblett, T. (1992), "A further comparison of splitting rules for decision tree induction", Machine Learning, 8(1), 75-86. https://doi.org/10.1007/BF00994006
- Chen, W.F. and Lui, E.M. (1992), "Stability design of steel frames", Boca Raton, FL: CRC Press.
- Chen, W.F. and Lui, E.M. (1987), "Structural stability: theory and implementation", Elsevier, Amsterdam.
- Chen, W.F., Kim, S.E. and Choi, S.H. (2001), "Practical secondorder inelastic analysis for three-dimensional steel frames", Steel Struct., 1(3), 213-223. https://doi.org/10.12989/scs.2001.1.2.213
- Chiorean, G.C. (2017), "Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 136, 547-579. https://doi.org/10.1016/j.engstruct.2017.01.040.
- Dong, Y.F., Li, Y.M., Lai, M. and Xiao, M.K. (2008), "Nonlinear structural response prediction based on support vector machines", J. Sound Vib., 311(3-5), 886-897. https://doi.org/10.1016/j.jsv.2007.09.054.
- Dube, T., Mutanga, O., Adam, E. and Ismail, R. (2014), "Intra-and-tnter species biomass prediction in a plantation forest: testing the utility of high spatial resolution spaceborne multispectral RapidEye sensor and advanced machine learning Aalgorithms", Sensors, 14, 15348-15370. https://doi.org/10.3390/s140815348.
- Friedman, J.H. (1999), "Greedy function approximation: a gradient boosting machine", Technical Report, Department of Statistics, Stanford University.
- Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Annal. Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451
- Friedman, J.H. (2002), "Stochastic gradient boosting", Comput. Stat. Data Anal., 38, 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
- Gong, L., Wang, C., Wu, F., Zhang, J., Zhang, H. and Li, Q. (2016), "Earthquake-induced building damage detection with post-event sub-meter vhr terrasar-X staring spotlight imagery", Remote Sens, 8, 887. https://doi.org/10.3390/rs8110887.
- Gulgec, N.S., Takac, M. and Pakzad, S.N. (2017), "Structural damage detection using convolutional neural networks", Model Valid Uncertain Quantif, 3, 331-337. https://doi.org/10.1007/978-3-319-54858-6_33.
- Hasni, H., Alavi, A.H., Lajnef, N., Abdelbarr, M., Masri, S.F. and Chakrabartty, S. (2017), "Self-powered piezo-floating-gate sensors for health monitoring of steel plates", Eng. Struct., 148, 584-601. https://doi.org/10.1016/j.engstruct.2017.06.063.
- Hurtado, J.E. and Alvarez, D.A. (2003), "Classification approach for reliability analysis with stochastic finiteelement modeling", J. Struct. Eng., 129(8),1141-1149. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1141).
- Karina, C.N.N, Chun, P.J. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
- Kim, S.E. and Choi, S.H. (2001), "Practical advanced analysis for semi-rigid space frames", Int. J. Solids Struct., 38(50-51), 9111-131. https://doi.org/10.1016/S0020-7683(01)00141-X.
- Kim, S.E. and Lee, J.H. (2002), "Improved refined plastic-hinge analysis accounting for lateral torsional buckling", J. Constr. Steel Res., 58(11), 1431-1453. https://doi.org/10.1016/S0143-974X(01)00068-2.
- Kim, S.E. and Thai, H.T. (2010), "Nonlinear inelastic dynamic analysis of suspension bridges", Eng. Struct., 32(12), 3845-3856. https://doi.org/10.1016/j.engstruct.2010.08.027.
- Kordjazi, A., Pooya Nejad, F. and Jaksa, M.B. (2014), "Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data", Comput. Geotech., 55, 91-102. https://doi.org/10.1016/j.compgeo.2013.08.001.
- Kurtoglu, A. (2018), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct., 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.
- Laory, I., Trinh, T.N., Smith, I.F. and Brownjohn, J.M. (2014), "Methodologies for predicting natural frequency variation of a suspension bridge", Eng. Struct., 80, 211-221. https://doi.org/10.1016/j.engstruct.2014.09.001.
- Lee, S., Ha, J., Zokhirova, M., Moon, H. and Lee, J. (2018), "Background information of deep learning for structural engineering", Arch. Comput. Method. Eng., 25, 121-129. https://doi.org/10.1007/s11831-017-9237-0.
- Li, H.S., Lu, Z.Z. and Yue, Z.F. (2006), "Support vector machine for structural reliability analysis", Appl. Math. Mech., (English Edition), 27(10), 1295-1303. https://doi.org/10.1007/s10483-006-1001-z.
- Li, L. and Zhao, Z. (2019), "Application of machine learning in optimized distribution of dampers for structural vibration control", Earthq. Struct., 16(6), 679-690. https://doi.org/10.12989/eas.2019.16.6.679.
- Liu, W.Z. and White, A.P. (1994), "The importance of attribute selection measures in decision tree induction", Machine Learning, 15 (1), 25-41. https://doi.org/10.1023/A:1022609119415.
- Mingers, J. (1989a), "An empirical comparison of selection measures for decision-tree induction", Machine Learning, 3 (4), 319-342. https://doi.org/10.1007/BF00116837
- Mingers, J. (1989b), "An empirical comparison of pruning methods for decision-tree induction", Machine Learning, 4(2), 227-243. https://doi.org/10.1023/A:1022604100933
- Nguyen, P.C. and Kim, S.E. (2016), "advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method", Steel Compos. Struct., 21(5), 1121-1144. https://doi.org/10.12989/scs.2016.21.5.1121.
- Oishi, A. and Yagawa, G. (2017), "Computational mechanics enhanced by deep learning", Comput. Method. Appl. M., 327, 327-351. https://doi.org/10.1016/j.cma.2017.08.040.
- Orbison, J.G., McGuire, W. and Abel, J.F. (1982), "Yield surface applications in nonlinear steel frame analysis", Comput. Method. Appl. M., 33(1-3), 557-573. https://doi.org/10.1016/0045-7825(82)90122-0.
- Reich, Y. (1997), "Machine learning techniques for civil engineering problems", Microcomput. Civil Eng., 12, 295-310. https://doi.org/10.1111/0885-9507.00065
- Rocco, C.M. and Moreno, J.A. (2002), "Fast Monte Carlo reliability evaluation using support vector machine", Reliab. Eng. Syst. Saf., 76(3), 237-243. https://doi.org/10.1016/S0951-8320(02)00015-7.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Sarkar, S., Reddy, K.K., Giering, M. and Gurvich, M.R. (2016), "Deep learning for structural health monitoring: a damage characterization application", Annual conference of the prognostics and health management society, Colorado, USA, October.
- Satish, B.S., Yogesh, K., Anirban, G. and Sauvik B. (2013), "Structural health monitoring of a cantilever beam using support vector machine", Int. J. Adv. Struct. Eng., 5, 1-7. https://doi.org/10.1186/2008-6695-5-2
- Serban, A. (2017), "Failure estimation of the composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.
- Shan, D., Fu, C. and Li, C. (2012), "Experimental investigation of damage identification for continuous railway bridges", J. Modern Transportation, 20, 1-9. https://doi.org/10.1007/BF03325770
- Tang, H.S., Xue, S.T., Chen, R. and Sato, T. (2006), "Online weighted LS-SVM for hysteretic structural system identification", Eng. Struct., 28(12), 1728-1735. https://doi.org/10.1016/j.engstruct.2006.03.008.
- Thai, H.T. and Kim, S.E. (2009), "Practical advanced analysis software for nonlinear inelastic analysis of space steel structures", Adv. Eng. Software, 40(9), 786-797. ps://doi.org/10.1016/j.advengsoft.2009.02.001.
- Thai, H.T. and Kim, S.E. (2011), "Nonlinear inelastic time-history analysis of truss structures", J. Constr. Steel Res., 67(12), 1966-1972. https://doi.org/10.1016/j.jcsr.2011.06.015.
- The, L.H. and Clark, M.J. (1999), "Plastic-zone analysis of 3D steel frames using beam elements", J. Struct. Eng. - ASCE, 125(11),1328-1337. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1328),
- Thirumalaiselvi, A., Verma, M., Anandavalli, N. and Rajasankar, J. (2018), "Response prediction of laced steel-concrete composite beams using machine learning algorithms", Struct. Eng. Mech., 66(3), 399-409. https://doi.org/10.12989/sem.2018.66.3.399.
- Torkamani, M.A.M. and Sonmez, M. (2001), "Inelastic large deflection modeling of beam-columns", J. Struct. Eng. -ASCE, 127(8), 876-887. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(876).
- Uddin, M.A., Sheikh, A.H., Brown, D., Bennett, T. and Uy, B. (2018), "Geometrically nonlinear inelastic analysis of steel- concrete composite beams with partial interaction using a higher-order beam theory", Int. J. Nonlinear Mech., 100, 34-47. https://doi.org/10.1016/j.ijnonlinmec.2018.01.002.
- Vapnik, V.N. (1995), The Nature of Statistical Learning Theory, Springer, New York.
- Vapnik, V.N. (1999), "An overview of statistical learning theory", IEEE T. Neural Networks, 10, 988-999. DOI: 10.1109/72.788640.
- Worden, K. and Lane, A.J. (2001), "Damage identification using support vector machines", Smart Mater. Struct. 10, 540-547. https://doi.org/10.1088/0964-1726/10/3/317
- Worden, K. and Manson, G. (2007), "The application of machine learning to structural health monitoring", Philos. T. Royal Soc. London Series A, 365, 515-537. https://doi.org/10.1098/rsta.2006.1938.
- Xu, Q., Xiong, Y., Dai, H., Kumari, K.M., Xu, Q., Ou, H.Y. and Wei, D.Q. (2017), "PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm", J. Theor. Biology, 417, 1-7. https://doi.org/10.1016/j.jtbi.2017.01.019.
- Yang, I.T. and Hsieh, Y.H. (2013), "Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization", Eng. with Comput., 29, 151-163. https://doi.org/10.1007/s00366-011-0251-9.
- Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J, 28(12), 2110-2116. https://doi.org/10.2514/3.10529.
- Zhang, F., Du, B. and Zhang, L.P. (2016), "Scene classification via a gradient boosting random convolutional network framework", IEEE T. Geosci. Remote Sens., 54, 1793-1802. OI: 10.1109/TGRS.2015.2488681.
- Zhang, J. and Sato, T. (2006), "Non-linear hysteretic structural identification by utilizing on-line support vector regression", Doboku Gakkai Ronbunshuu A, 62, 312-322. https://doi.org/10.2208/jsceja.62.312
- Zhang, J., Sato, T. and Iai, S. (2007), "Novel support vector regression for structural system identification", Struct. Control Health Monit., 14, 609-626. https://doi.org/10.1002/stc.175.
- Zhang, Y. and Haghani, A. (2015), "A gradient boosting method to improve travel time prediction", T. Res. Part C: Emerging Technologies, 58, Part B, 308-324. https://doi.org/10.1016/j.trc.2015.02.019.
Cited by
- Predicting the splitting tensile strength of concrete using an equilibrium optimization model vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.081