References
- M. T. Amouzadeh, M. Shamsipur, R. Saber and S. Sarkar, U. S. patent 0062185 (2019).
- K. Zhang, H. Li, X. Xu, and H. Yu, "Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption", Microporous Mesoporous Mater., 255, 7 (2018). https://doi.org/10.1016/j.micromeso.2017.07.037
- K. Naseem, R. Begum, and Z. H. Farooqi, "Catalytic reduction of 2-nitroaniline: a review. Environmental Science and Pollution Research", Environ. Sci. Pollut. Res., 24, 6446 (2017). https://doi.org/10.1007/s11356-016-8317-2
- D. B. Jirekar, M. Ubale, and M. Farooqui, "Evaluation of Adsorption Capacity of Low-Cost Adsorbent for the Removal of Congo Red Dye from Aqueous Solution", Orbital: Electron. J. Chem., 8, 282 (2016).
- Z. H. Farooqi, K. Naseem, R. Begum, and A. Ijaz, "Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels", J. Inorg. Organomet. Polym. Mater., 25, 1554 (2015). https://doi.org/10.1007/s10904-015-0275-5
- A. Aslani, V. Oroojpour, and M. Fallahi, "Sonochemical syn-thesis, size controlling and gas sensing properties of NiO nanoparticles", Appl. Surf. Sci., 257, 4056 (2011). https://doi.org/10.1016/j.apsusc.2010.11.174
- V. S. R. Channu, R. Holze, and B. Rambabu, "Synthesis and characterization of NiO nanoparticles for electrochemical applications", Colloids Surf. A Physicochem. Eng. Asp., 414, 204 (2012). https://doi.org/10.1016/j.colsurfa.2012.08.023
- G. Jayakumar, A. A. Irudayaraj, and A. D. Raj, "Photocatalytic Degradation of Methylene Blue by Nickel Oxide Nanoparticles", Mater. Today: Proc., 4, 11690 (2017). https://doi.org/10.1016/j.matpr.2017.09.083
- X. Wan, M. Yuan, S. Tie, and S. Lan, "Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue", Appl. Surf. Sci., 277, 40 (2013). https://doi.org/10.1016/j.apsusc.2013.03.126
- N. N. M. Zorkipli, N. H. H. Kaus, and A. A. Mohamad, "Synthesis of NiO Nanoparticles through Sol-gel Method", Procedia Chem., 19, 626 (2016). https://doi.org/10.1016/j.proche.2016.03.062
- H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, and X. Li, "Multishelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances", J. Alloys Compd., 685, 8 (2016). https://doi.org/10.1016/j.jallcom.2016.05.264
- S. J. Musevi, A. Aslani, H. Motahari, and H. Salimi, "Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method", J. Saudi Chem. Soc., 20, 245 (2016). https://doi.org/10.1016/j.jscs.2012.06.009
- K. Karthik, G. K. Selvan, M. Kanagaraj, S. Arumugam, and N. V. Jaya, "Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method", J. Alloys Compd., 509, 181 (2011). https://doi.org/10.1016/j.jallcom.2010.09.033
- K. Anandan and V. Rajendran, "Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process", Mater. Sci. Eng. B, 199, 48 (2015). https://doi.org/10.1016/j.mseb.2015.04.015
- A. C. Gandhi, J. Pant, S. D. Pandit, S. K. Dalimbkar, T. S. Cha, C. L. Cheng, Y. R. Ma, and S. Y. Wu. "Short-Range Magnon Excitation in NiO Nanoparticles", J. Phys. Chem. C, 117, 18666 (2013). https://doi.org/10.1021/jp4029479
- H. Ullah, L. Mushtaq, Z. Ullah, M. A. Bangesh, and M. Nawaz, "Cost effective green synthesis of NiO nanostructures as highly efficient photocatalysts for degradation of organic dyes", Micro Nano Lett., 14, 103 (2019). https://doi.org/10.1049/mnl.2018.5106
- A. Rahdar, M. Aliahmadb, and Y. Azizib, "NiO Nanoparticles: Synthesis and Characterization", J. Nanostruct., 5, 145 (2015).
- G. George and S. Anandhan, "Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics", RSC Adv., 4, 62009 (2014). https://doi.org/10.1039/C4RA11083H
- B. T. Sone, X. G. Fuku, and M. Maaza, "Physical & Electrochemical Properties of Green Synthesized Bunsenite NiO Nanoparticles via Callistemon Viminalis' Extracts", Int. J. Electrochem. Sci., 11, 8204 (2016).
- L. Jia, W. Zhang, J. Xu, J. Cao, Z. Xu, and Y. Wang, "Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines", Nanomaterials, 8, 409 (2018). https://doi.org/10.3390/nano8060409
- B. Naik, S. Hazra, V. S. Prasad, and N. N. Ghosh, "Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol", Catal. Commun., 12, 1104 (2011). https://doi.org/10.1016/j.catcom.2011.03.028
- R. Vijayan, S. Joseph, and B. Mathew, "Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties", Artif. Cells Nanomed. Biotechnol., 46, 861 (2017).
- M. A. Bhosale, D. R. Chenna, and B. M. Bhanage, "Ultrasound Assisted Synthesis of Gold Nanoparticles as an Efficient Catalyst for Reduction of Various Nitro Compounds", Chemistry Select, 2, 1225 (2017).
-
T. Aditya, J. Jana, N. K. Singh, A. Pal, and T. Pal, "Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted
$Cu_2O$ Nanocatalyst", ACS Omega, 2, 1968 (2017). https://doi.org/10.1021/acsomega.6b00447 - J. Sun, Y. Fu, G. He, X. Sun, and X. Wang, "Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/ graphene nanocomposite", Catal. Sci. Technol., 4, 1742 (2014). https://doi.org/10.1039/C4CY00048J
- T. Aditya, J. Jana, A. Pal, and T. Pal, "One-Pot Fabrication of Perforated Graphitic Carbon Nitride Nanosheets Decorated with Copper Oxide by Controlled Ammonia and Sulfur Trioxide Release for Enhanced Catalytic Activity", ACS Omega, 3, 9318 (2018). https://doi.org/10.1021/acsomega.8b00968
- N. Sahiner, S. Sagbas, and N. Aktas, "Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)-Cu ionic liquid composites", RSC Adv., 5, 18183 (2015). https://doi.org/10.1039/C5RA00126A
- N. Sahiner, A. Kaynak, and S. Butun, "Soft hydrogels for dual use: Template for metal nanoparticle synthesis and a reactor in the reduction of nitrophenols", J. Non. Cryst. Solids, 358, 758 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.12.022
- P. Ptacek, F. Soukal, and T. Opravil, "Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of This Instanton", ed by P. Ptacek, F. Soukal and T. Opravil, p.27-46, IntechOpen Publishers, London, 2018.
- S. Butun and N. Sahiner, "A versatile hydrogel template for metal nano particle preparation and their use in catalysis", Polymer, 52, 4834 (2011). https://doi.org/10.1016/j.polymer.2011.08.021
- J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A.R. Rai, and H. D. Juneja, "Nickel oxide nanoparticles: Synthesis, characterization and recyclable catalyst", Int. J. Eng. Res., 6, 93 (2015).
- M. A. Nasseri, F. Ahrari, and B. Zakerinasab, "Nickel oxide nanoparticles: a green and recyclable catalytic system for the synthesis of diindolyloxindole derivatives in aqueous medium" RSC Adv., 5, 13901 (2015). https://doi.org/10.1039/C4RA14551H
-
K. H. Liew, T. K. Lee, M. A. Yarmo, K. S. Loh, A. F. Peixoto, C. Freire, and R. M. Yusop, "Ruthenium Supported on Ionically Cross-linked Chitosan-Carrageenan Hybrid
$MnFe_2O_4$ Catalysts for 4-Nitrophenol Reduction", Catalysts, 9, 254 (2019). https://doi.org/10.3390/catal9030254