References
- Antoniadis, I., Chronopoulos, D., Spitas, V. and Koulocheris, D. (2015), "Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element", J. Sound Vib., 346, 37-52. https://doi.org/10.1016/j.jsv.2015.02.028.
- Arakaki, T., Kuroda, H., Arima, F., Inoue, Y. and Baba, K. (1999a), "Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series", AIJ J. Tech. Des., 5(8), 239-244. https://doi.org/10.3130/aijt.5.239_1
- Arakaki, T., Kuroda, H., Arima, F., Inoue, Y. and Baba, K. (1999b), "Development of seismic devices applied to ball screw: Part 2 performance test and evaluation of RD-series", AIJ J. Tech. Des., 5(8), 365-370.
- Asai, T., Araki, Y. and Ikago, K. (2018), "Structural control with tuned inertial mass electromagnetic transducers", Struct. Control Health Monit., 25(2), e2059. https://doi.org/10.1002/stc.2059.
- Chen, M.Z.Q., Hu, Y., Li, C. and Chen, G. (2015), "Performance benefits of using inerter in semiactive suspensions", IEEE Trans. Control Syst. Technol., 23(4), 1571-1577. http://dx.doi.org/10.1109/TCST.2014.2364954.
- Chen, Q.J., Zhao, Z.P., Zhang, R.F. and Pan, C. (2018), "Impact of soil-structure interaction on structures with inerter system", J. Sound Vib., 433, 1-15. https://doi.org/10.1016/j.jsv.2018.07.008.
- Chen, Q.J., Zhao, Z.P., Xia, Y.Y., Pan, C., Luo, H. and Zhang, R.F. (2019), "Comfort based floor design employing tuned inerter mass system", J. Sound Vib., 458, 143-157. https://doi.org/10.1016/j.jsv.2019.06.019.
- Christopoulos, C. and Filiatrault, A. (2006), Principles of Passive Supplemental Damping and Seismic Isolation, Iuss press, Pavia, Italy.
- Clark, R.N. (1992), "The Routh-Hurwitz stability criterion, revisited", IEEE Control Syst. Mag., 12(3), 119-120. https://doi.org/10.1109/37.165530.
- Crandall, S.H. and Mark, W.D. (2014), Random Vibration in Mechanical System, Academic Press, New York, USA.
- Dai, J., Xu, Z.D. and Gai, P.P. (2019), "Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location", Eng. Struct., 199, 109585. https://doi.org/10.1016/j.engstruct.2019.109585.
- De Domenico, D. and Ricciardi, G. (2018a), "Earthquake-resilient design of base isolated buildings with TMD at basement: Application to a case study", Soil Dyn. Earthq. Eng., 113, 503-521. https://doi.org/10.1016/j.soildyn.2018.06.022.
- De Domenico, D. and Ricciardi, G. (2018b), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25(10), e2234. https://doi.org/10.1002/stc.2234.
- De Domenico, D. and Ricciardi, G. (2018c), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://dx.doi.org/10.1002/eqe.3098.
- De Domenico, D. and Ricciardi, G. (2019), "Earthquake protection of structures with nonlinear viscous dampers optimized through an energy-based stochastic approach", Eng. Struct., 179, 523-539. https://doi.org/10.1016/j.engstruct.2018.09.076.
- De Domenico, D., Deastra, P., Ricciardi, G., Sims, N.D. and Wagg, D.J. (2019), "Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings", J. Franklin Inst., 356(14), 7626-7649. https://doi.org/10.1016/j.jfranklin.2018.11.012.
- Di Matteo, A., Masnata, C. and Pirrotta, A. (2019), "Simplified analytical solution for the optimal design of tuned mass damperiInerter for base isolated structures", Mech. Syst. Signal Process., 134, 106337. https://doi.org/10.1016/j.ymssp.2019.106337.
- Greco, R. and Marano, G.C. (2013), "Optimum design of tuned mass dampers by displacement and energy perspectives", Soil Dyn. Earthq. Eng., 49, 243-253. https://doi.org/10.1016/j.soildyn.2013.02.013.
- Hanson, R.D. and Soong, T.T. (2001), Seismic Design with Supplemental Energy Dissipation Devices, Earthquake Engineering Research Institute, Oakland, CA, USA.
- Hwang, J.S., Huang, Y.N. and Hung, Y.H. (2005), "Analytical and experimental study of toggle-brace-damper systems", J. Struct. Eng., 131(7), 1035-1043. https://doi.org/10.1061/(asce)0733-9445(2005)131:7(1035).
- Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799. https://doi.org/10.1002/stc.345.
- Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://dx.doi.org/10.1002/eqe.1138.
- Jiang, Y.Y., Zhao, Z.P., Zhang, R.F., De Domenico, D. and Pan, C. (2020), "Optimal design based on analytical solution for storage tank with inerter isolation system", Soil Dyn. Earthq. Eng., 129, 105924. https://doi.org/10.1016/j.soildyn.2019.105924.
- Kawamata, S. (1973), "Development of a vibration control system of structures by means of mass pumps", Institute of Industrial Science, Tokyo, Japan.
- Li, H., Liu, J. and Ou, J. (2011), "Seismic response control of a cable-stayed bridge using negative stiffness dampers", Struct. Control Health Monit., 18(3), 265-288. https://doi.org/10.1002/stc.368.
- Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085.
- Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665.
- Masri, S.F. and Caffrey, J.P. (2017), "Transient response of a SDOF system with an inerter to nonstationary stochastic excitation", J. Appl. Mech., 84(4), 041005. https://doi.org/10.1115/1.4035930.
- Murakami, Y., Noshi, K., Fujita, K., Tsuji, M. and Takewaki, I. (2013), "Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers", Earthq. Struct., Int. J., 5(3), 261-276. https://doi.org/10.12989/eas.2013.5.3.261.
- Palomares, E., Nieto, A.J., Morales, A.L., Chicharro, J.M. and Pintado, P. (2018), "Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system", J. Sound Vib., 414, 31-42. https://doi.org/10.1016/j.jsv.2017.11.006.
- Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: New structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000615.
- Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. http://dx.doi.org/10.1002/eqe.2861.
- Radu, A., Lazar, I.F. and Neild, S.A. (2019), "Performance-based seismic design of tuned inerter dampers", Struct. Control Health Monit., 26(5), e2346. https://doi.org/10.1002/stc.2346.
- Ribakov, Y. and Reinhorn, A.M. (2003), "Design of amplified structural damping using optimal considerations", J. Struct. Eng., 129(10), 1422-1427. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1422).
- Saha, A. and Mishra, S.K. (2019), "Adaptive negative stiffness device based nonconventional tuned mass damper for seismic vibration control of tall buildings", Soil Dyn. Earthq. Eng., 126, 105767. https://doi.org/10.1016/j.soildyn.2019.105767.
- Shi, X. and Zhu, S. (2019), "A comparative study of vibration isolation performance using negative stiffness and inerter dampers", J. Franklin Inst., 356(14), 7922-7946. https://doi.org/10.1016/j.jfranklin.2019.02.040.
- Smith, M.C. (2002), "Synthesis of mechanical networks: The inerter", IEEE Trans. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532.
- Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, London, UK.
- Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
- Takewaki, I. (2011), Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes, John Wiley & Sons, London, UK.
- Takewaki, I., Murakami, S., Yoshitomi, S. and Tsuji, M. (2012), "Fundamental mechanism of earthquake response reduction in building structures with inertial dampers", Struct. Control Health Monit., 19(6), 590-608. http://dx.doi.org/10.1002/stc.457.
- Tapia, N., Almazan, J. and Baquero, J. (2016), "Development of a novel combined system of deformation amplification and added stiffness and damping: Analytical result and full scale pseudodynamic tests", Eng. Struct., 119, 61-80. https://doi.org/10.1016/j.engstruct.2016.04.004.
- Walsh, K.K., Cronin, K.J., Rambo-Roddenberry, M.D. and Grupenhof, K. (2012), "Dynamic analysis of seismically excited flexible truss tower with scissor-jack dampers", Struct. Control Health Monit., 19(8), 723-745. https://doi.org/10.1002/stc.465.
- Wang, M., Sun, F.F., Yang, J.Q. and Nagarajaiah, S. (2019a), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110.
- Wang, X., He, T., Shen, Y., Shan, Y. and Liu, X. (2019b), "Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness", J. Sound Vib., 463, 114941. https://doi.org/10.1016/j.jsv.2019.114941.
- Wu, B., Shi, P. and Ou, J. (2013), "Seismic performance of structures incorporating magnetorheological dampers with pseudo-negative stiffness", Struct. Control Health Monit., 20(3), 405-421. https://doi.org/10.1002/stc.504.
- Zhang, R.F., Zhao, Z.P. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
- Zhang, R.F., Zhao, Z.P., Pan, C., Ikago, K. and Xue, S.T. (2020), "Damping enhancement principle of inerter system", Struct. Control Health Monit., 27(5), e2523. https://doi.org/10.1002/stc.2523.
- Zhao, Z.P., Chen, Q.J., Zhang, R.F., Pan, C. and Jiang, Y.Y. (2019a), "Optimal design of an inerter isolation system considering the soil condition", Eng. Struct., 196, 109324. https://doi.org/10.1016/j.engstruct.2019.109324.
- Zhao, Z.P., Zhang, R.F., Jiang, Y.Y. and Pan, C. (2019b), "Seismic response mitigation of structures with a friction pendulum inerter system", Eng. Struct., 193, 110-120. https://doi.org/10.1016/j.engstruct.2019.05.024.
- Zhao, Z.P., Zhang, R.F., Jiang, Y.Y. and Pan, C. (2019c), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171.
- Zhao, Z.P., Zhang, R.F. and Lu, Z. (2019d), "A particle inerter system for structural seismic response mitigation", J. Franklin Inst., 356(14), 7669-7688. https://doi.org/10.1016/j.jfranklin.2019.02.001.
- Zhao, Z.P., Chen, Q.J., Zhang, R.F., Pan, C. and Jiang, Y.Y. (2020), "Energy dissipation mechanism of inerter systems", Int. J. Mech. Sci., 184, 105845. https://doi.org/10.1016/j.ijmecsci.2020.105845.
Cited by
- An inerter-system chain and energy-based optimal control of adjacent single-degree-of-freedom structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.245
- Closed‐form design formulae for seismically isolated structure with a damping enhanced inerter system vol.28, pp.12, 2020, https://doi.org/10.1002/stc.2840