DOI QR코드

DOI QR Code

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza (Department of Electrical Engineering, Shahid Beheshti University) ;
  • Najaafi, Neda (Iran Industrial Design Company) ;
  • Habibi, Mostafa (Institute of Research and Development, Duy Tan University) ;
  • Ebrahimi, Farzad (Mechanical Engineering department, Faculty of Engineering, Imam Khomeini International University) ;
  • Safarpour, Hamed (Mechanical Engineering department, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2019.12.04
  • 심사 : 2020.07.12
  • 발행 : 2020.10.25

초록

This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

키워드

참고문헌

  1. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  2. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  3. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., Int. J., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  4. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  5. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  6. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  7. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  8. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191.
  9. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., Derras, A., Bousahla, A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  10. Chen, H., Zhang, Q., Luo, J., Xu, Y. and Zhang, X. (2020), "An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine", Appl. Soft Comput., 86, 105884. https://doi.org/10.1016/j.asoc.2019.105884.
  11. Chuaqui, T.R., Roque, C.M. and Ribeiro, P. (2018), "Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method", J. Intell. Mater. Syst. Struct., 29(13), 2728-2743. https://doi.org/10.1016/j.asoc.2019.105884.
  12. De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Materialia, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007.
  13. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concr., Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  14. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  15. Duc, N.D. and Van Tung, H. (2010), "Nonlinear analysis of stability for functionally graded cylindrical panels under axial compression", Comput. Mater. Sci., 49(4), 313-316. https://doi.org/10.1016/j.commatsci.2009.12.030.
  16. Ebrahimi, F. and Rastgoo, A. (2008a), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin-Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.
  17. Ebrahimi, F. and Rastgoo, A. (2008b), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044.
  18. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Des. Struct. Mach, 1-25. https://doi.org/10.1080/15397734.2019.1566743.
  19. Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., Int. J., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
  20. Feng, C., Kitipornchai, S. amd Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
  21. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2019), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2019.1705166.
  22. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7.
  23. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019b), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct. Mach., 1-30. https://doi.org/10.1080/15397734.2019.1701490.
  24. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019c), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct. Mach., 1-19. https://doi.org/10.1080/15397734.2019.1697932.
  25. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
  26. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2019.1662968.
  27. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. an Mahmoud, S. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory" J. Sandw. Struct. Mater., 1099636219845841. https://doi.org/10.1177/1099636219845841.
  28. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  29. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Compt., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  30. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On prestressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  31. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  32. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019d), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  33. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014a), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/09641726/23/12/125036/meta.
  34. Ke, L., Wang, Y. and Reddy, J. (2014b), "Thermo-electromechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.
  35. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  36. Kumari, P. and Kar, S. (2019), "Static behavior of arbitrarily supported composite laminated cylindrical shell panels: An analytical 3D elasticity approach", Compos. Struct., 207, 949-965. https://doi.org/10.1016/j.compstruct.2018.09.035.
  37. Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Threedimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
  38. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  39. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  40. Mehrvarz, A., Salarieh, H., Alasty, A. and Vatankhah, R. (2018), "Boundary vibration control of strain gradient Timoshenko micro-cantilevers using piezoelectric actuators", arXiv, 1812.01155.
  41. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  42. Moayedi, H. and Hayati, S. (2018a), "Applicability of a CPTbased neural network solution in predicting load-settlement responses of bored pile", Int. J. Geomech., 18(6), 06018009. https://10.1061/(ASCE)GM.1943-5622.0001125.
  43. Moayedi, H. and Hayati, S. (2018b), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027.
  44. Moayedi, H. and Rezaei, A. (2019), "An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand", Neural Comput. Appl., 31(2), 327-336. https://doi.org/10.1007/s00521-017-2990-z.
  45. Moayedi, H., Bui, D.T., Gor, M., Pradhan, B. and Jaafari, A. (2019), "The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes", ISPRS Int. J. Geo-Inf., 8(9), 391. https://doi.org/10.3390/ijgi8090391.
  46. Moayedi, H., Darabi, R., Ghabussi, A., Habibi, M. and Foong, L.K. (2020), "Weld orientation effects on the formability of tailor welded thin steel sheets", Thin-Wall. Struct., 149, 106669. https://doi.org/10.1016/j.tws.2020.106669.
  47. Motezaker, M. and Eyvazian, A. (2020a), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481.
  48. Motezaker, M. and Eyvazian, A. (2020b), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  49. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi/abs/10.1021/nn9010472.
  50. Roberts, A.P. and Garboczi, E.J. (2001), "Elastic moduli of model random three-dimensional closed-cell cellular solids", Acta Materialia, 49(2), 189-197. https://doi.org/10.1016/S1359-6454(00)00314-1.
  51. Safarpour, H., Ghanbari, B. and Ghadiri, M. (2019a), "Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell", Appl. Math. Model., 65, 428-442. https://doi.org/10.1016/j.apm.2018.08.028.
  52. Safarpour, H., Pourghader, J. and Habibi, M. (2019b), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical threedimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465.
  53. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Wall. Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  54. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031.
  55. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  56. Shen, H.S., Xiang, Y. and Fan, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments", Compos. Struct., 182, 447-456. https://doi.org/10.1016/j.compositesb.2017.10.032.
  57. Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowl. Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002.
  58. Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018a), "Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments", Compos. Part B Eng., 141, 148-157. https://doi.org/10.1016/j.compositesb.2017.12.048.
  59. Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018b), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032.
  60. Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media, London, UK.
  61. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  62. Sun, J. and Zhao, J. (2018), "Multi-layer graphene reinforced nano-laminated WC-Co composites", Mater. Sci. Eng. A, 723, 1-7. https://doi.org/10.1016/j.msea.2018.03.040.
  63. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A. and Mahmoud, S. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  64. Vatankhah, R., Nojoumian, M.A. and Salarieh, H. (2015), "Vibration control of strain gradient nonlinear micro-cantilevers using piezoelectric actuators", Appl. Mech. Mater, 789, 976-971. https://doi.org/10.4028/www.scientific.net/AMM.789-790.967.
  65. Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946.
  66. Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060.
  67. Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doublycurved shallow shells reinforced by graphene nanoplatelets", Results Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
  68. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
  69. Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4.
  70. Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Inf. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022.
  71. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
  72. Yas, M., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001.
  73. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  74. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  75. Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024.
  76. Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Comput. Biol. Chem., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017

피인용 문헌

  1. Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601