DOI QR코드

DOI QR Code

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis

  • Ho, Long V. (Faculty of Engineering and Architecture, Ghent University) ;
  • Khatir, Samir (Faculty of Engineering and Architecture, Ghent University) ;
  • Roeck, Guido D. (Department of Civil Engineering, KU Leuven) ;
  • Bui-Tien, Thanh (Faculty of Civil Engineering, University of Transport and Communications) ;
  • Wahab, Magd Abdel (Division of Computational Mechanics, Ton Duc Thang University)
  • 투고 : 2019.11.19
  • 심사 : 2020.07.08
  • 발행 : 2020.10.25

초록

Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.

키워드

참고문헌

  1. Altunisik, A.C. and Bayraktar, A. (2017), "Manual model updating of highway bridges under operational condition", Smart Struct. Syst., Int. J., 19(1), 39-46. https://doi.org/10.12989/sss.2017.19.1.039.
  2. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Contin., 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
  3. Boscato, G., Salvatore, R., Ceravolo, R. and Fragonara, L.Z. (2015), "Global sensitivity-based model updating for heritage structures: Global sensitivity-based model updating for heritage structures", Comput. Aided Civ. Infrastruct. Eng., 30(8), 620-635. https://doi.org/10.1111/mice.12138.
  4. Bui, T.T. (2011), "Experimental report of a plain pipe", Report No 01, Department of Civil Engineering, KU Leuven, Belgium.
  5. Campolongo, F., Cariboni, J. and Saltelli, A. (2007), "An effective screening design for sensitivity analysis of large models", Environ. Model. Softw., 22(10), 1509-1518. https://doi.org/10.1016/j.envsoft.2006.10.004.
  6. Carvalho, J., Datta, B.N., Gupta, A. and Lagadapati, M. (2007), "A direct method for model updating with incomplete measured data and without spurious modes", Mech. Syst. Signal Process., 21(7), 2715-2731. https://doi.org/10.1016/j.ymssp.2007.03.001.
  7. Casciati, F., Casciati, S., Elia, L. and Faravelli, L. (2016), "Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge", Smart Struct. Syst., Int. J., 17(3), 523-539. https://doi.org/10.12989/sss.2016.17.3.523.
  8. Chen, H.P and Ni, Y.Q. (2018), Structural Health Monitoring of Large Civil Engineering Structures, John Wiley & Sons Ltd, Chichester, West Sussex, UK.
  9. Cottin, N. and Reetz, J. (2006), "Accuracy of multiparameter eigenvalues used for dynamic model updating with measured natural frequencies only", Mech. Syst. Signal Process., 20(1), 65-77. https://doi.org/10.1016/j.ymssp.2004.10.005.
  10. Deng, Lu. and Cai, C.S. (2010), "Bridge model updating using response surface method and genetic algorithm", J. Bridge Eng., 15(5), 553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092.
  11. Feng, K., Lu, Z. and Yang, C. (2019), "Enhanced Morris method for global sensitivity analysis: Good proxy of Sobol' index", Struct. Multidiscipl. Optim., 59(2), 373-387. https://doi.org/10.1007/s00158-018-2071-7.
  12. Huang, T.L. and Chen, H.P. (2017), "Mode identifiability of a cable-stayed bridge using modal contribution index", Smart Struct. Syst., Int. J., 20(2), 115-126. https://doi.org/10.12989/sss.2017.20.2.115.
  13. Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Methods Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016.
  14. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fract., 206, 215-227. https://doi.org/10.1007/s10704-017-0210-6.
  15. Hoa, T.N., Khatir, S., De Roeck, G., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., Int. J., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487
  16. Hunt, D.L. (1992), "Application of an enhanced coordinate modal assurance criterion", Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, USA, February.
  17. Islam, M.S., Do, J. and Kim, D. (2018), "Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes", Smart Struct. Syst., Int. J., 21(2), 207-223. https://doi.org/10.12989/sss.2018.21.2.207.
  18. Ghiasi, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study", Smart Struct. Syst., Int. J, 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561.
  19. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, December.
  20. Khatir, S., Wahab, M.A., Boutchicha, D., Capozucca, R. and Khatir, T. (2019), "Optimization of IGA parameters based on beam structure using cuckoo search algorithm", Proceedings of the 1st International Conference on Numerical Modelling in Engineering, Singapore, August.
  21. Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017.
  22. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M.A. (2018), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and particle swarm optimization", Comptes Rendus Mecanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008.
  23. Khatir, S., Khatir, T., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Bui, T.Q., Capozucca, R. and Abdel-Wahab, M. (2020), "An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA", Smart Struct. Syst., Int. J., 25, 605-617. https://doi.org/10.12989/sss.2020.25.5.605.
  24. Le-Duc, T., Nguyen, Q.H. and Nguyen-Xuan, H. (2020), "Balancing composite motion optimization", Inf. Sci., 520, 250-270. https://doi.org/10.1016/j.ins.2020.02.013.
  25. Lin, R.M. and Ewins, D.J. (1994), "Analytical model improvement using frequency response functions", Mech. Syst. Signal Process., 8(4), 437-458. https://doi.org/10.1006/mssp.1994.1032.
  26. Menberg, K., Heo, Y. and Choudhary, R. (2016), "Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information", Energy Build., 133, 433-445. https://doi.org/10.1016/j.enbuild.2016.10.005.
  27. Mirjalili, S., Wang, G.G. and Coelho, L.S. (2014), "Binary optimization using hybrid particle swarm optimization and gravitational search algorithm", Neural Comput. Appl., 25(6), 1423-1435. https://doi.org/10.1007/s00521-014-1629-6.
  28. Morris, M.D. (1991), "Factorial sampling plans for preliminary computational experiments", Technimetrics, 33(2), 161-174. https://doi.org/10.2307/1269043.
  29. Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Dissertation, Katholieke Universiteit Leuven, Belgium.
  30. Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: A review", J. Dyn. Syst. Meas. Control, 123(4) 659-667. https://doi.org/10.1115/1.1410370.
  31. Qin, S., Zhang, Y., Zhou, Y.L. and Kang, J. (2018), "Dynamic model updating for bridge structures using the kriging model and PSO algorithm ensemble with higher vibration modes", Sensors, 18(6), 1879. https://doi.org/10.3390/s18061879.
  32. Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: A gravitational search algorithm", Inf. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004.
  33. Reynders, E., Schevenels, M. and De Roeck, G. (2014), "A MATLAB toolbox for experimental and operational modal analysis", MACEC 3.2, Department of Civil Engineering, KU Leuven, Belgium.
  34. Reynders, E., Pintelon, R. and De Roeck, G. (2008), "Uncertainty bounds on modal parameters obtained from stochastic subspace identification", Mech. Syst. Signal Process., 22(4) 948-969. https://doi.org/10.1016/j.ymssp.2007.10.009.
  35. Reynders, Ed. and De Roeck, G. (2008), "Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis", Mech. Syst. Signal Process., 22(3) 617-637. https://doi.org/10.1016/j.ymssp.2007.09.004.
  36. Saltelli, A. (2004), Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models", John Wiley & Sons Ltd, Chichester, West Sussex, UK.
  37. Sobol, I.M. (2001), "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates", Math. Comput. Simul., 55(1-3) 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6.
  38. ANSYS (2016), ANSYS Mechanical Release 17.0, ANSYS Inc.
  39. Tran-Ngoc, H., He, L., Reynders, E., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Abdel Wahab, M. (2020), "An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization", J. Sound Vib., 476, 115315. https://doi.org/10.1016/j.jsv.2020.115315.
  40. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. https://doi.org/10.3390/s18124131.
  41. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  42. Wan, H.P. and Wei-Xin, R. (2015), "Parameter selection in finiteelement-model updating by global sensitivity analysis using Gaussian process metamodel", J. Struct. Eng., 141(6), 04014164. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001108.

피인용 문헌

  1. Water Environmental Capacity Calculation Based on Control of Contamination Zone for Water Environment Functional Zones in Jiangsu Section of Yangtze River, China vol.13, pp.5, 2020, https://doi.org/10.3390/w13050587
  2. Post-earthquake track irregularity spectrum of high-speed railways continuous girder bridge vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.323