References
- Arrigan, J., Huang, C., Staino, A., Basu, B. and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., Int. J., 13(2), 177-201. https://doi.org/10.12989/sss.2014.13.2.177.
- Arrigan, J., Pakrashi, V., Basu, B. and Nagarajaiah, S. (2011), "Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers", Struct. Control Health Monit., 18(8), 840-851. https://doi.org/10.1002/stc.404.
- Basu, B., Zhang, Z. and Nielsen, S.R.K. (2016), "Damping of edgewise vibration in wind turbine blades by means of circular liquid dampers", Wind Energy, 19(2), 213-226. https://doi.org/10.1002/we.1827.
- Clough, R. and Penzien, J. (2003), Dynamics of Structures, Computer & Structures, Berkeley, CA, USA.
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31(2), 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001.
- Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct. Syst., Int. J., 18(4), 683-705. http://dx.doi.org/10.12989/sss.2016.18.4.683.
- DNV (2002), Guidelines for Design of Wind Turbines, Det Norske Veritas and Wind Energy Department, Riso National Laboratory, Copenhagen, Denmark.
- DNV (2010), DNV-RP-C205: Environmental Conditions and Environmental Loads, Det Norske Veritas, Norway.
- Fitzgerald, B. and Basu, B. (2014), "Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades", J. Sound Vib., 333(23), 5980-6004. https://doi.org/10.1016/j.jsv.2014.05.031.
- Fitzgerald, B., Basu, B. and Nielsen, S.R.K. (2013), "Active tuned mass dampers for control of in-plane vibrations of wind turbine blades", Struct. Control Health Monit., 20(12), 1377-1396. https://doi.org/10.1002/stc.1524.
- Ghassempour, M., Failla, G. and Arena, F. (2019), "Vibration mitigation in offshore wind turbines via tuned mass damper", Eng. Struct., 183, 610-636. https://doi.org/10.1016/j.engstruct.2018.12.092.
- Global Wind Energy Council (2018), Global Wind Report-Annual Market Update 2017, GWEC.
- Hansen, M.O.L. (2008), Aerodynamics of Wind Turbines, Earthscan, London, UK.
- Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D. and Kruseman, P. (1973), "Measurements of wind-wave growth and swell decay", Proceedings of the Joint North Sea Wave Project (JONSWAP), Hamburg, Germany, September.
- Hemmati, A., Oterkus, E. and Khorasanchi, M. (2019), "Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers", Ocean Eng., 172, 286-295. https://doi.org/10.1016/j.oceaneng.2018.11.055.
- Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063.
- Huang, G., Liao, H. and Li, M. (2013), "New formulation of Cholesky decomposition and applications in stochastic simulation", Probabilistic Eng. Mech., 34, 40-47. https://doi.org/10.1016/j.probengmech.2013.04.003.
- Hussan, M., Rahman, M.S., Sharmin, F., Kim, D. and Do, J. (2018), "Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation", Ocean Eng., 160, 449-460. https://doi.org/10.1016/j.oceaneng.2018.04.041.
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW Reference Wind Turbine for Offshore System Development", Technical Report No. NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, USA.
- Lackner, M.A. and Rotea, M.A. (2011), "Passive structural control of offshore wind turbines", Wind Energy, 14(3), 373-388. https://doi.org/10.1002/we.426.
- Mensah, A.F. and Duenas-Osorio, L. (2014), "Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs)", Struct. Saf., 47, 78-86. https://doi.org/10.1016/j.strusafe.2013.08.004.
- Murtagh, P.J., Basu, B. and Broderick, B.M. (2005), "Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading", Eng. Struct., 27(8), 1209-1219. https://doi.org/10.1016/j.engstruct.2005.03.004.
- Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy, 11(4), 305-317. https://doi.org/10.1002/we.249.
- Staino, A., Basu, B. and Nielsen, S.R.K. (2012), "Actuator control of edgewise vibrations in wind turbine blades", J. Sound Vib., 331(6), 1233-1256. https://doi.org/10.1016/j.jsv.2011.11.003.
- Stewart, G.M. and Lackner, M.A. (2014), "The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads", Eng. Struct., 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045.
- Sun, C. and Jahangiri, V. (2018), "Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper", Mech. Syst. Signal Process., 105, 338-360. https://doi.org/10.1016/j.ymssp.2017.12.011.
- Sun, C. and Jahangiri, V. (2019), "Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions", Eng. Struct., 178, 472-483. https://doi.org/10.1016/j.engstruct.2018.10.053.
- Sun, C., Jahangiri, V. and Sun, H. (2019), "Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations", Smart Struct. Syst., Int. J., 24(1), 53-65. http://dx.doi.org/10.12989/sss.2019.24.1.053.
- Zhang, C., Li, L., and Ou, J. (2010), "Swinging motion control of suspended structures: Principles and applications", Struct. Control Health Monit., 17(5), 549-562. https://doi.org/10.1002/stc.331.
- Zhang, C. (2014), "Control force characteristics of different control strategies for the wind-excited 76-story benchmark building structure", Adv. Struct. Eng., 17(4), 543-559. https://doi.org/10.1260/1369-4332.17.4.543.
- Zhang, C. and Ou, J. (2015), "Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control", Eng. Struct., 82, 93-103. https://doi.org/10.1016/j.engstruct.2014.10.029.
- Zhang, C. and Wang, H. (2019), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.
- Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the active rotary inertia driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), e2543. https://doi.org/10.1002/stc.2543.
- Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
- Zhang, Z., Li, J., Nielsen, S.R.K. and Basu, B. (2014), "Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers", J. Sound Vib., 333(21), 5283-5298. https://doi.org/10.1016/j.jsv.2014.06.006.
- Zhang, Z., Basu, B. and Nielsen, S.R.K. (2015a), "Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades", Struct. Control Health Monit., 22(3), 500-517. https://doi.org/10.1002/stc.1689.
- Zhang, Z., Nielsen, S.R.K., Basu, B. and Li, J. (2015b), "Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations", J. Fluids Struct., 59, 252-269. https://doi.org/10.1016/j.jfluidstructs.2015.09.006.
- Zhang, Z., Staino, A., Basu, B. and Nielsen, S.R. (2016), "Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using realtime hybrid testing", Eng. Struct., 126, 417-431. https://doi.org/10.1016/j.engstruct.2016.07.008.
- Zhao, B., Gao, H., Wang, Z. and Lu, Z. (2018), "Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper", Wind Energy, 21(12), 1309-1328. https://doi.org/10.1002/we.2256.
- Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.
- Zuo, H., Bi, K. and Hao, H. (2018), "Dynamic analyses of operating offshore wind turbines including soil-structure interaction", Eng. Struct., 157, 42-62. https://doi.org/10.1016/j.engstruct.2017.12.001.
- Zuo, H., Bi, K. and Hao, H. (2019), "Mitigation of tower and outof-plane blade vibrations of offshore monopile wind turbines by using multiple tuned mass dampers", Struct. Infrastruct. Eng., 15(2), 269-284. https://doi.org/10.1080/15732479.2018.1550096.
- Zuo, H., Bi, K., and Hao, H. (2020), "A state-of-the-art review on the vibration mitigation of wind turbines", Renew. Sust. Energy Rev., 121, 109710. https://doi.org/10.1016/j.rser.2020.109710.