DOI QR코드

DOI QR Code

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Bouzgarrou, Souhail Mohamed (Civil Engineering Department, Faculty of Engineering, Jazan University) ;
  • Al Naim, Abdullah F. (Department of Physics, College of Science, King Faisal University) ;
  • Hussain, Sajjad (Department of mathematics, Government Post graduate College) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Iqbal, Zafar (Department of Mathematics, University of Sargodha) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
  • Received : 2020.07.19
  • Accepted : 2020.09.15
  • Published : 2020.10.25

Abstract

The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

Keywords

References

  1. Akbar, N.S. (2015), "Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism", Int. J. Numer. Meth. Heat Fluid Flow, 25(2), 214-224. https://doi.org/10.1108/HFF-07-2013-0242.
  2. Akbar, N.S., Ebaid, A. and Khan, Z.H. (2015), "Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet", J. Magnet. Magnetic Mater., 382(15), 355-358. https://doi.org/10.1016/j.jmmm.2015.01.088.
  3. Al-Amri, F. and Muthtamilselvan, M. (2020), "Stagnation point flow of nanofluid containing micro-organisms", Case Stud. Therm. Eng., 100656. https://doi.org/10.1016/j.csite.2020.100656.
  4. Alamri, S.Z., Ellahi, R., Shehzad, N. and Zeeshan, A. (2019), "Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing", J. Molecul. Liquid., 273, 292-304. https://doi.org/10.1016/j.molliq.2018.10.038.
  5. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated $SiO_2$ nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/ACC.2018.6.6.585
  6. Ara, A., Khan, N.A., Khan, H. and Sultan, F. (2014)." Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking sheet", Ain Shams Eng. J., 5(4), 1337-1342. https://doi.org/10.1016/j.asej.2014.06.002.
  7. Awad, F.G., Motsa, S. and Khumalo, M. (2014), "Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy", PloS one, 9(9), https://doi.org/10.1371/journal.pone.0107622.
  8. Balla, C.S., Alluguvelli, R., Naikoti, K. and Makinde, O.D. (2020), "Effect of chemical reaction on bioconvective flow in oxytactic microorganisms suspended porous cavity", J. Appl. Comput. Mech. 6(3), 653-664. https://doi.org/10.22055/JACM.2019.14811.
  9. Belabid, J. and Allali, K. (2019), "Thermo-bioconvection in horizontal porous annulus with the presence of phototactic microorganisms. International", J. Eng. Sci., 140, 17-25. https://doi.org/10.1016/j.ijengsci.2019.04.002.
  10. Bhatti, M.M. and Michaelides, E.E. (2020), "Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate", J. Therm. Anal. Calorim., 3(6), 1-10. https://doi.org/10.1007/s10973-020-094923.
  11. Bhatti, M.M., Sheikholeslami, M., Shahid, A., Hassan, M. and Abbas, T. (2019), "Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation", Colloid. Surf. A: Physicochem. Eng. Aspect., 570, 368-376. https://doi.org/10.1016/j.colsurfa.2019.03.058.
  12. Bhatti, M.M., Zeeshan, A. and Ellahi, R. (2017), "Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism", Microvas. Res., 110, 32-42. https://doi.org/10.1016/j.mvr.2016.11.007.
  13. Choi, S.U. and Eastman, J.A. (1995). "Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)", Argonne National Lab., IL, USA.
  14. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. https://doi.org/10.12989/ACC.2019.7.2.065
  15. Eldabe, N.T., Rizkalla, R.R., Abouzeid, M.Y. and Ayad, V.M. (2020), "Thermal diffusion and diffusion thermo effects of Eyring-Powell nanofluid flow with gyrotactic microorganisms through the boundary layer", Heat Transf.-Asian Res., 49(1), 383-405. https://doi.org/10.1002/htj.21617.
  16. Eldabe, N.T., Rizkalla, R.R., Abouzeid, M.Y. and Ayad, V.M. (2020), "Thermal diffusion and diffusion thermo effects of Eyring-Powell nanofluid flow with gyrotactic microorganisms through the boundary layer", Heat Transf.-Asian Res., 49(1), 383-405. https://doi.org/10.1002/htj.21617.
  17. Ghadikolaei, S.S. and Gholinia, M. (2019), "Terrific effect of H2 on 3D free convection MHD flow of C2H6O2H2O hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and nanoparticle shapes effects", Int. J. Hydro. Energy, 44(31), 17072-17083. https://doi.org/10.1016/j.ijhydene.2019.04.171.
  18. Ghadikolaei, S.S., Gholinia, M., Hoseini, M.E. and Ganji, D.D. (2019), "Natural convection MHD flow due to MoS2-Ag nanoparticles suspended in C2H6O2H2O hybrid base fluid with thermal radiation", J. Taiwan Inst. Chem. Eng., 97, 12-23. https://doi.org/10.1016/j.jtice.2019.01.028.
  19. Gireesha, B.J., Gorla, R.S.R. and Mahanthesh, B. (2015), "Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet", J. Nanofluid., 4(4), 474-484. https://doi.org/10.1166/jon.2015.1177.
  20. Hsiao, K.L. (2017), "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method", Energy, 130, 486-499. https://doi.org/10.1016/j.energy.2017.05.004.
  21. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. https://doi.org/10.12989/acc.2015.3.1.039
  22. Khan, I., Malik, M.Y., Salahuddin, T., Khan, M. and Rehman, K.U. (2017), "Homogenous-heterogeneous reactions in MHD flow of Powell-Eyring fluid over a stretching sheet with Newtonian heating", Neural Comput. Appl., 30(11), 3581-3588. https://doi.org/10.1007/s00521-017-2943-6.
  23. Khan, M.I., Hayat, T., Khan, M.I. and Alsaedi, A. (2018), "Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid", Int. Commun. Heat Mass Transf., 91, 216-224. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.001.
  24. Kumar, P.S., Gireesha, B.J., Mahanthesh, B. and Chamkha, A.J. (2019), "Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition", J. Therm. Anal. Calorim., 136(5), 1947-1957. https://doi.org/10.1007/s10973-018-7860-0.
  25. Kuznetsov, A.V. (2006), "The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms", Eur. J. Mech.-B/Fluid., 25(2), 223-233. https://doi.org/10.1016/j.euromechflu.2005.06.003.
  26. Li, Z., Saleem, S., Shafee, A., Chamkha, A.J. and Du, S. (2019), "Analytical investigation of nanoparticle migration in a duct considering thermal radiation", J. Therm. Anal. Calorim., 135(3), 1629-1641. https://doi.org/10.1007/s10973-018-7517-z.
  27. Li, Z., Sheikholeslami, M., Shafee, A., Ramzan, M., Kandasamy, R. and Al-Mdallal, Q.M. (2019), "Influence of adding nanoparticles on solidification in a heat storage system considering radiation effect", J. Molec. Liquid., 273, 589-605. https://doi.org/10.1016/j.molliq.2018.10.015.
  28. Maleque, K. (2013), "Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation", J. Thermodyn., 2013, 1-11. http://dx.doi.org/10.1155/2013/692516.
  29. Mehryan, S.A.M., Kashkooli, F.M., Soltani, M. and Raahemifar, K. (2016), "Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach", PloS one, 11(6), http://dx.doi.org/10.1371/journal.pone.0157598.
  30. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539
  31. Muthtamilselvan, M. and Renuka, A. (2018), "Nanofluid flow and heat simultaneously induced by two stretchable rotating disks using Buongiorno's model", Multidisc. Model. Mater. Struct., 14(5), 1115-1128. https://doi.org/10.1108/MMMS-03-2018-0045
  32. Muthtamilselvan, M., Ramya, E. and Doh, D.H. (2019), "Inclined Lorentz force effects on 3D micropolar fluid flow due to a stretchable rotating disks with higher order chemical reaction", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(1), 323-335. https://doi.org/10.1177/0954406218756450
  33. Pal, D. and Mondal, S.K. (2019), "Magneto-bioconvection of Powell Eyring nanofluid over a permeable vertical stretching sheet due to gyrotactic microorganisms in the presence of nonlinear thermal radiation and Joule heating", Int. J. Ambient Energy, 1-12. https://doi.org/10.1080/01430750.2019.1679253.
  34. Patel, M. and Timol, M.G. (2009), "Numerical treatment of Powell-Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC)", Appl. Numer. Math., 59(10), 2584-2592. https://doi.org/10.1016/j.apnum.2009.04.010.
  35. Pedley, T.J., Hill, N.A. and Kessler, J.O. (1988), "The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms", J. Fluid Mech., 195(21), 223-237. https://doi.org/10.1017/S0022112088002393.
  36. Ramya, E., Muthtamilselvan, M. and Doh, D.H. (2018), "Absorbing/emitting radiation and slanted hydromagnetic effects on micropolar liquid containing gyrostatic microorganisms", Appl. Math. Comput., 324, 69-81. https://doi.org/10.1016/j.amc.2017.12.001.
  37. Rashidi, M.M., Ganesh, N.V., Hakeem, A.A. and Ganga, B. (2014), "Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation", J. Molec. Liquid., 198, 234-238. https://doi.org/10.1016/j.molliq.2014.06.037.
  38. Renuka, A., Muthtamilselvan, M., Doh, D.H. and Cho, G.R. (2020), "Entropy analysis and nanofluid past a double stretchable spinning disk using Homotopy Analysis Method", Math. Comput. Simul., 171, 152-169. https://doi.org/10.1016/j.matcom.2019.05.008.
  39. Saleem, S., Rafiq, H., Al-Qahtani, A., El-Aziz, M.A., Malik, M. Y. and Animasaun, I.L. (2019), "Magneto Jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism", Math. Prob. Eng., 2019, 1-11. https://doi.org/10.1155/2019/3478037.
  40. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  41. Shafique, Z., Mustafa, M. and Mushtaq, A. (2016), "Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy", Result. Phys., 6, 627-633. https://doi.org/10.1016/j.rinp.2016.09.006.
  42. Sheikholeslami, M., Rashidi, M.M. and Ganji, D.D. (2015), "Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid", Comput. Meth. Appl. Mech. Eng., 294, 299-312. https://doi.org/10.1016/j.cma.2015.06.010.
  43. Sheikholeslami, M., Rashidi, M.M., Hayat, T. and Ganji, D.D. (2016), "Free convection of magnetic nanofluid considering MFD viscosity effect", J. Molec. Liquid., 218, 393-399. https://doi.org/10.1016/j.molliq.2016.02.093
  44. Waqas, M., Khan, M.I., Hayat, T., Alsaedi, A. and Khan, M.I. (2017), "On Cattaneo-Christov double diffusion impact for temperature-dependent conductivity of Powell-Eyring liquid", Chin. J. Phys., 55(3), 729-737. https://doi.org/10.1016/j.cjph.2017.02.003.
  45. Yoon, H.K. and Ghajar, A.J. (1987), "A note on the Powell-Eyring fluid model", Int. Commun. Heat Mass Transf., 14(4), 381-390. https://doi.org/10.1016/0735-1933(87)90059-5.