참고문헌
- ACI Committee (2011), Building Code Requirements for Structural Concrete (ACI 318-11), American Concrete Institute.
- Abbass, W., Khan, M.I. and Mourad, S. (2018), "Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete", Constr. Build. Mater., 168, 556-569. https://doi.org/10.1016/j.conbuildmat.2018.02.164.
- Akcay, B. and Ozsar, D.S. (2019), "Do polymer fibres affect the distribution of steel fibres in hybrid fibre reinforced concretes?", Constr. Build. Mater., 228, 116732. https://doi.org/10.1016/j.conbuildmat.2019.116732.
- Al-Masoodi, A.H.H., Kawan, A., Kasmuri, M., Hamid, R. and Khan, M.N.N. (2016), "Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement", Constr. Build. Mater., 104, 247-262. https://doi.org/10.1016/j.conbuildmat.2015.12.037.
- Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H. and Akil, H.M. (2020), "Experimental investigation on mechanical properties of plain and rubberised concretes with steel-polypropylene hybrid fibre", Constr. Build. Mater., 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194.
- Ashok, M., Jayabalan, P., Saraswathy, V. and Muralidharan, S. (2020), "A study on mechanical properties of concrete including activated recycled plastic waste", Adv. Concrete Constr.. 9(2), 207-2015. https://doi.org/10.12989/acc.2020.9.2.207.
- Bayramov, F., Tasdemir, C. and Tasdemir, M.A. (2004), "Optimisation of steel fibre reinforced concretes by means of statistical response surface method", Cement Concrete Compos., 26(6), 665-675. https://doi.org/10.1016/S0958-9465(03)00161-6.
- Charron, J.P., Desmettre, C. and Androuet, C. (2020), "Flexural and shear behaviors of steel and synthetic fiber reinforced concretes under quasi-static and pseudo-dynamic loadings", Constr. Build. Mater., 238, 117659. https://doi.org/10.1016/j.conbuildmat.2019.117659.
- Elices, M. and Rocco, C.G. (2008), "Effect of aggregate size on the fracture and mechanical properties of a simple concrete", Eng. Fract. Mech., 75(13), 3839-3851. https://doi.org/10.1016/j.engfracmech.2008.02.011.
- Fu, C., Ye, H., Wang, K., Zhu, K. and He, C. (2019), "Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)", Compos. Part B: Eng., 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045.
- Gomes, R.F., Dias, D.P. and de Andrade Silva, F. (2020), "Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete", Theo. Appl. Fract. Mech., 107, 102568. https://doi.org/10.1016/j.tafmec.2020.102568.
- Grunewald, S. and Walraven, J.C. (2001), "Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete", Cement Concrete Res., 31(12), 1793-1798. https://doi.org/10.1016/S0008-8846(01)00555-5.
- Grzymski, F., Musial, M. and Trapko, T. (2019), "Mechanical properties of fibre reinforced concrete with recycled fibres", Constr. Build. Mater., 198, 323-331. https://doi.org/10.1016/j.conbuildmat.2018.11.183.
- Guo, H., Tao, J., Chen, Y., Li, D., Jia, B. and Zhai, Y. (2019), "Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete", Constr. Build. Mater., 224, 504-514. https://doi.org/10.1016/j.conbuildmat.2019.07.096.
- Han, J., Zhao, M., Chen, J. and Lan, X. (2019), "Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 209, 577-591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
- Khan, M., Cao, M. and Ali, M. (2020), "Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete", J. Build. Eng., 30, 101272. https://doi.org/10.1016/j.jobe.2020.101272.
- Lee, S.J., Hong, Y., Eom, A.H. and Won, J.P. (2018), "Effect of steel fibres on fracture parameters of cementitious composites", Compos. Struct., 204, 658-663. https://doi.org/10.1016/j.compstruct.2018.08.002.
- Liu, F., Ding, W. and Qiao, Y. (2020), "Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder", Constr. Build. Mater., 241, 118000. https://doi.org/10.1016/j.conbuildmat.2020.118000.
- Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
- Mohammadhosseini, H., Tahir, M.M., Alaskar, A., Alabduljabbar, H. and Alyousef, R. (2020), "Enhancement of strength and transport properties of a novel preplaced aggregate fiber reinforced concrete by adding waste polypropylene carpet fibers", J. Build. Eng., 27, 101003. https://doi.org/10.1016/j.jobe.2019.101003.
- Mohammed, A.A. and Rahim, A.A.F. (2020), "Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber", Constr. Build. Mater., 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350.
- Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Constr., 7(3), 143-150. DOI: https://doi.org/10.12989/acc.2019.7.3.143.
- Pal, S., Shariq, M., Abbas, H., Pandit, A.K. and Masood, A. (2020), "Strength characteristics and microstructure of hooked-end steel fiber reinforced concrete containing fly ash, bottom ash and their combination", Constr. Build. Mater., 247, 118530. https://doi.org/10.1016/j.conbuildmat.2020.118530
- Pesic, N., Zivanovic, S., Garcia, R. and Papastergiou, P. (2016), "Mechanical properties of concrete reinforced with recycled HDPE plastic fibres", Constr. Build. Mater., 115, 362-370. https://doi.org/10.1016/j.conbuildmat.2020.118530.
- Sabapathy, Y.K., Sabarish, S., Nithish, C.N.A., Ramasamy, S.M. and Krishna, G. (2019), "Experimental study on strength properties of aluminium fibre reinforced concrete", J. King Saud Univ.-Eng. Sci.. https://doi.org/10.1016/j.jksues.2019.12.004.
- Sengul, O. (2016), "Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires", Constr. Build. Mater., 122, 649-658. https://doi.org/10.1016/j.conbuildmat.2016.06.113.
- Shen, D., Liu, X., Zeng, X., Zhao, X. and Jiang, G. (2020), "Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age", Constr. Build. Mater., 244, 117874. https://doi.org/10.1016/j.conbuildmat.2019.117874.
- Shi, X., Park, P., Rew, Y., Huang, K. and Sim, C. (2020), "Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension", Constr. Build. Mater., 233, 117316. https://doi.org/10.1016/j.conbuildmat.2019.117316.
- Sivakumar, A. and Santhanam, M. (2007), "Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres", Cement Concrete Compos., 29(8), 603-608. https://doi.org/10.1016/j.cemconcomp.2007.03.006.
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
- Thomas, J. and Ramaswamy, A. (2007), "Mechanical properties of steel fiber-reinforced concrete", J. Mater. Civil Eng.. 19(5), 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
- Trottier, J.F. and Banthia, N. (1994), "Toughness characterization of steel-fiber reinforced concrete", J. Mater. Civil Eng., 6(2), 264-289. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(264).
- Zhang, P., Li, Q. and Sun, Z. (2012), "Effect of polypropylene fibre on flexural properties of concrete composites containing fly ash and silica fume", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl, 226(2), 177-181. https://doi.org/10.1177/1464420712437637.
- Zhong, H. and Zhang, M. (2020), "Experimental study on engineering properties of concrete reinforced with hybrid recycled tyre steel and polypropylene fibres", J. Clean. Prod., 259, 120914. https://doi.org/10.1016/j.jclepro.2020.120914.