References
- Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, M.L., Kinnunen, P. and Illikainen, M. (2019), "Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes", Waste Biomass Valoriz., 11, 3081-3096. https://doi.org/10.1007/s12649-019-00626-9.
- Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P. and Illikainen, M. (2018), "Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates", J. Mater. Civil Eng., 31(2), 1-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002608.
- Adak, D., Sarkar, M. and Mandal, S. (2014), "Effect of nano-silica on strength and durability of fly ash based geopolymer mortar", Constr. Build. Mater., 70, 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093.
- Alzeebaree, R., Cevik, A., Mohammedameen, A., Nis, A. and Gulsan, M.E. (2019), "Mechanical performance of FRP-confined geopolymer concrete under seawater attack", Adv. Struct. Eng., 23(6), 1055-1073. https://doi.org/10.1177/1369433219886964.
- Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos. Struct., 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201.
-
Andrew, R.M. (2018), "Global
$CO_2$ emissions from cement production", Earth Syst. Sci. Data, 10(1), 195-217. https://doi.org/10.5194/essd-10-195-2018. - Annadurai, S., Rathinam, K. and Kanagarajan, V. (2020), "Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer", Adv. Concrete Constr., 9(2), 139-147. https://doi.org/10.12989/acc.2020.9.2.139.
- ASTM C109 (2008), ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, USA.
- Ay, N. and Unal, M. (2000) "The use of waste ceramic tile in cement production", Cement Concrete Res., 30(3), 497-499. https://doi.org/10.1016/S0008-8846(00)00202-7.
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7.
- Behera, M., Bhattacharyya, S.K., Minocha, A.K., Deoliya, R. and Maiti, S. (2014), "Recycled aggregate from C&D waste & its use in concrete-- A breakthrough towards sustainability in construction sector: A review", Constr. Build. Mater., 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003.
- Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Provis, J.L. and Delvasto, S. (2012), "Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash", Waste Biomass Valoriz., 3(1), 99-108. https:// doi.org/10.1007/s12649-011-9093-3.
- Cevik, A., Alzeebaree, R., Humur, G., Nis, A. and Gulsan, M.E. (2018), "Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete", Ceram. Int., 44(11), 12253-12264. https://doi.org/10.1016/j.ceramint.2018.04.009.
- Davidovits, J. (1994) "High-alkali cements for 21st century concretes", Spec. Publ., 144, 383-398.
- Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112.
- Foletto, E.L., Gratieri, E., Oliveira, L.H.D. and Jahn, S.L. (2006), "Conversion of rice hull ash into soluble sodium silicate", Mater. Res., 9(3), 335-38. http://dx.doi.org/10.1590/S1516-14392006000300014.
- Guo, M.Z., Chen, Z., Ling, T.C. and Poon, C.S. (2015), "Effects of recycled glass on properties of architectural mortar before and after exposure to elevated temperatures", J. Clean. Prod., 101, 158-164. https://doi.org/10.1016/j.jclepro.2015.04.004.
- Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. http://dx.doi.org/10.12989/acc.2017.19.2.017.
- Kalapathy, U., Proctor, A. and Shultz, J. (2002), "An improved method for production of silica from rice hull ash", Bioresour. Technol., 85(3), 285-289. https://doi.org/10.1016/S0960-8524(02)00116-5.
- Karozou, A., Konopisi, S., Paulidou, E. and Stefanidou, M. (2019), "Alkali activated clay mortars with different activators", Constr. Build. Mater., 212, 85-91. https://doi.org/10.1016/j.conbuildmat.2019.03.244.
- Kong, D.L. and Sanjayan, J.G. (2010), "Effect of elevated temperatures on geopolymer paste, mortar and concrete", Cement Concrete Res., 40(2), 334-339. https://doi.org/10.1016/j.cemconres.2009.10.017.
- Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. http://dx.doi.org/10.12989/acc.2018.6.4.345.
- Lavat, A.E., Trezza, M.A. and Poggi, M. (2009), "Characterization of ceramic roof tile wastes as pozzolanic admixture", Waste Manage., 29(5), 1666-1674. https://doi.org/10.1016/j.wasman.2008.10.019.
- McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19(9-10), 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
- Mohammedameen, A., Cevik, A., Alzeebaree, R., Nis, A. and Gulsan, M.E. (2019), "Performance of FRP confined and unconfined engineered cementitious composite exposed to seawater", J. Compos. Mater., 53(28-30), 4285-8304. https://doi.org/10.1177/0021998319857110.
- Pacheco-Torgal, F. and Jalali, S. (2010), "Reusing ceramic wastes in concrete", Constr. Build. Mater., 24(5), 832-838. https://doi.org/10.1016/j.conbuildmat.2009.10.023.
- Pan, Z., Tao, Z., Murphy, T. and Wuhrer, R. (2017), "High temperature performance of mortars containing fine glass powders", J. Clean. Prod., 162, 16-26. https://doi.org/10.1016/j.jclepro.2017.06.003.
- Patil, A.A., Chore, H.S. and Dode, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. http://dx.doi.org/10.12989/acc.2014.2.1.029.
- Pereira-de-Oliveira, L.A., Castro-Gomes, J.P. and Santos, P.M. (2012), "The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components", Constr. Build. Mater., 31, 197-203. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
- Puertas, F., Garcia-Diaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gomez, M.P. and Martinez-Ramirez, S. (2008), "Ceramic wastes as alternative raw materials for Portland cement clinker production", Cement Concrete Compos., 30(9), 798-805. https://doi.org/10.1016/j.cemconcomp.2008.06.003.
- Rajeswaran, P., Kumutha, R. and Vijai, K. (2018), "mechanical properties of fly ash blended ceramic waste based geopolymeric binder", Int. J. Civil Eng. Technol., 9(3), 566-576.
- Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R. and Paya, J. (2013), "Properties and microstructure of alkali-activated red clay brick waste", Constr. Build. Mater., 43, 98-106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.
- Rovnanik, P., Reznik, B. and Rovnanikova, P. (2016), "Blended alkali-activated fly ash/brick powder materials", Procedia Eng., 151, 108-113. https://doi.org/10.1016/j.proeng.2016.07.397.
- Senthamarai, R.M. and Manoharan, P.D. (2005), "Concrete with ceramic waste aggregate", Cement Concrete Compos., 27(9-10), 910-913. https://doi.org/10.1016/j.cemconcomp.2005.04.003.
- Shafiq, I., Azreen, M. and Hussin, M.W. (2017), "Sulphuric acid resistant of self compacted geopolymer concrete containing slag and ceramic waste", MATEC Web of Conferences, 97, 1102-1109. https://doi.org/10.1051/matecconf/20179701102.
- Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. http://dx.doi.org/10.12989/acc.2014.2.2.109.
- Shrestha, R., Baweja, D., Neupane, K., Chalmers, D. and Sleep, P. (2013), "Mechanical properties of geopolymer concrete: Applicability of relationships defined by AS 3600", Concrete Institute of Australia-Biennial Conference.
- Sindhunata, Van Deventer, J.S.J., Lukey, G.C. and Xu, H. (2006), "Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization", Indus. Eng. Chem. Res., 45(10), 3559-3568. https://doi.org/10.1021/ie051251p.
- ASTM C1585 (2011), C1585 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, Pennsylvania. USA.
- Szabo, R., Gombkoto, I., Sveda, M. and Mucsi, G. (2017), "Effect of grinding fineness of fly ash on the properties of geopolymer foam", Arch. Metal. Mater., 62(2), 1257-1261. https://doi.org/10.1515/amm-2017-0188.
- Tho-In, T., Sata, V., Boonserm, K. and Chindaprasirt, P. (2018), "Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash", J. Clean. Prod., 172, 2892-2898. https://doi.org/10.1016/j.jclepro.2017.11.125.
- Torres-Carrasco, M. and Puertas, F. (2015), "Waste glass in the geopolymer preparation. mechanical and microstructural characterisation", J. Clean. Prod., 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074.