DOI QR코드

DOI QR Code

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Received : 2020.01.14
  • Accepted : 2020.09.11
  • Published : 2020.10.25

Abstract

Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.

Keywords

References

  1. Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, M.L., Kinnunen, P. and Illikainen, M. (2019), "Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes", Waste Biomass Valoriz., 11, 3081-3096. https://doi.org/10.1007/s12649-019-00626-9.
  2. Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P. and Illikainen, M. (2018), "Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates", J. Mater. Civil Eng., 31(2), 1-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002608.
  3. Adak, D., Sarkar, M. and Mandal, S. (2014), "Effect of nano-silica on strength and durability of fly ash based geopolymer mortar", Constr. Build. Mater., 70, 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093.
  4. Alzeebaree, R., Cevik, A., Mohammedameen, A., Nis, A. and Gulsan, M.E. (2019), "Mechanical performance of FRP-confined geopolymer concrete under seawater attack", Adv. Struct. Eng., 23(6), 1055-1073. https://doi.org/10.1177/1369433219886964.
  5. Alzeebaree, R., Gulsan, M.E., Nis, A., Mohammedameen, A. and Cevik, A. (2018), "Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks", Steel Compos. Struct., 29(2), 201-218. https://doi.org/10.12989/scs.2018.29.2.201.
  6. Andrew, R.M. (2018), "Global $CO_2$ emissions from cement production", Earth Syst. Sci. Data, 10(1), 195-217. https://doi.org/10.5194/essd-10-195-2018.
  7. Annadurai, S., Rathinam, K. and Kanagarajan, V. (2020), "Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer", Adv. Concrete Constr., 9(2), 139-147. https://doi.org/10.12989/acc.2020.9.2.139.
  8. ASTM C109 (2008), ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, USA.
  9. Ay, N. and Unal, M. (2000) "The use of waste ceramic tile in cement production", Cement Concrete Res., 30(3), 497-499. https://doi.org/10.1016/S0008-8846(00)00202-7.
  10. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7.
  11. Behera, M., Bhattacharyya, S.K., Minocha, A.K., Deoliya, R. and Maiti, S. (2014), "Recycled aggregate from C&D waste & its use in concrete-- A breakthrough towards sustainability in construction sector: A review", Constr. Build. Mater., 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003.
  12. Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Provis, J.L. and Delvasto, S. (2012), "Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash", Waste Biomass Valoriz., 3(1), 99-108. https:// doi.org/10.1007/s12649-011-9093-3.
  13. Cevik, A., Alzeebaree, R., Humur, G., Nis, A. and Gulsan, M.E. (2018), "Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete", Ceram. Int., 44(11), 12253-12264. https://doi.org/10.1016/j.ceramint.2018.04.009.
  14. Davidovits, J. (1994) "High-alkali cements for 21st century concretes", Spec. Publ., 144, 383-398.
  15. Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., 103(2), 106-112.
  16. Foletto, E.L., Gratieri, E., Oliveira, L.H.D. and Jahn, S.L. (2006), "Conversion of rice hull ash into soluble sodium silicate", Mater. Res., 9(3), 335-38. http://dx.doi.org/10.1590/S1516-14392006000300014.
  17. Guo, M.Z., Chen, Z., Ling, T.C. and Poon, C.S. (2015), "Effects of recycled glass on properties of architectural mortar before and after exposure to elevated temperatures", J. Clean. Prod., 101, 158-164. https://doi.org/10.1016/j.jclepro.2015.04.004.
  18. Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. http://dx.doi.org/10.12989/acc.2017.19.2.017.
  19. Kalapathy, U., Proctor, A. and Shultz, J. (2002), "An improved method for production of silica from rice hull ash", Bioresour. Technol., 85(3), 285-289. https://doi.org/10.1016/S0960-8524(02)00116-5.
  20. Karozou, A., Konopisi, S., Paulidou, E. and Stefanidou, M. (2019), "Alkali activated clay mortars with different activators", Constr. Build. Mater., 212, 85-91. https://doi.org/10.1016/j.conbuildmat.2019.03.244.
  21. Kong, D.L. and Sanjayan, J.G. (2010), "Effect of elevated temperatures on geopolymer paste, mortar and concrete", Cement Concrete Res., 40(2), 334-339. https://doi.org/10.1016/j.cemconres.2009.10.017.
  22. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. http://dx.doi.org/10.12989/acc.2018.6.4.345.
  23. Lavat, A.E., Trezza, M.A. and Poggi, M. (2009), "Characterization of ceramic roof tile wastes as pozzolanic admixture", Waste Manage., 29(5), 1666-1674. https://doi.org/10.1016/j.wasman.2008.10.019.
  24. McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19(9-10), 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
  25. Mohammedameen, A., Cevik, A., Alzeebaree, R., Nis, A. and Gulsan, M.E. (2019), "Performance of FRP confined and unconfined engineered cementitious composite exposed to seawater", J. Compos. Mater., 53(28-30), 4285-8304. https://doi.org/10.1177/0021998319857110.
  26. Pacheco-Torgal, F. and Jalali, S. (2010), "Reusing ceramic wastes in concrete", Constr. Build. Mater., 24(5), 832-838. https://doi.org/10.1016/j.conbuildmat.2009.10.023.
  27. Pan, Z., Tao, Z., Murphy, T. and Wuhrer, R. (2017), "High temperature performance of mortars containing fine glass powders", J. Clean. Prod., 162, 16-26. https://doi.org/10.1016/j.jclepro.2017.06.003.
  28. Patil, A.A., Chore, H.S. and Dode, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. http://dx.doi.org/10.12989/acc.2014.2.1.029.
  29. Pereira-de-Oliveira, L.A., Castro-Gomes, J.P. and Santos, P.M. (2012), "The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components", Constr. Build. Mater., 31, 197-203. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
  30. Puertas, F., Garcia-Diaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gomez, M.P. and Martinez-Ramirez, S. (2008), "Ceramic wastes as alternative raw materials for Portland cement clinker production", Cement Concrete Compos., 30(9), 798-805. https://doi.org/10.1016/j.cemconcomp.2008.06.003.
  31. Rajeswaran, P., Kumutha, R. and Vijai, K. (2018), "mechanical properties of fly ash blended ceramic waste based geopolymeric binder", Int. J. Civil Eng. Technol., 9(3), 566-576.
  32. Reig, L., Tashima, M.M., Borrachero, M.V., Monzo, J., Cheeseman, C.R. and Paya, J. (2013), "Properties and microstructure of alkali-activated red clay brick waste", Constr. Build. Mater., 43, 98-106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.
  33. Rovnanik, P., Reznik, B. and Rovnanikova, P. (2016), "Blended alkali-activated fly ash/brick powder materials", Procedia Eng., 151, 108-113. https://doi.org/10.1016/j.proeng.2016.07.397.
  34. Senthamarai, R.M. and Manoharan, P.D. (2005), "Concrete with ceramic waste aggregate", Cement Concrete Compos., 27(9-10), 910-913. https://doi.org/10.1016/j.cemconcomp.2005.04.003.
  35. Shafiq, I., Azreen, M. and Hussin, M.W. (2017), "Sulphuric acid resistant of self compacted geopolymer concrete containing slag and ceramic waste", MATEC Web of Conferences, 97, 1102-1109. https://doi.org/10.1051/matecconf/20179701102.
  36. Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. http://dx.doi.org/10.12989/acc.2014.2.2.109.
  37. Shrestha, R., Baweja, D., Neupane, K., Chalmers, D. and Sleep, P. (2013), "Mechanical properties of geopolymer concrete: Applicability of relationships defined by AS 3600", Concrete Institute of Australia-Biennial Conference.
  38. Sindhunata, Van Deventer, J.S.J., Lukey, G.C. and Xu, H. (2006), "Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization", Indus. Eng. Chem. Res., 45(10), 3559-3568. https://doi.org/10.1021/ie051251p.
  39. ASTM C1585 (2011), C1585 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, Pennsylvania. USA.
  40. Szabo, R., Gombkoto, I., Sveda, M. and Mucsi, G. (2017), "Effect of grinding fineness of fly ash on the properties of geopolymer foam", Arch. Metal. Mater., 62(2), 1257-1261. https://doi.org/10.1515/amm-2017-0188.
  41. Tho-In, T., Sata, V., Boonserm, K. and Chindaprasirt, P. (2018), "Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash", J. Clean. Prod., 172, 2892-2898. https://doi.org/10.1016/j.jclepro.2017.11.125.
  42. Torres-Carrasco, M. and Puertas, F. (2015), "Waste glass in the geopolymer preparation. mechanical and microstructural characterisation", J. Clean. Prod., 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074.