DOI QR코드

DOI QR Code

Early gonadal maturation and vitellogenin mRNA expression in Siberian sturgeon Acipenser baerii cultured in a semi-closed water recirculating system in Korea

  • Park, Chulhong (Dinoville Sturgeon Aquafarm) ;
  • Gong, Seung Pyo (Department of Marine Bio-Materials & Aquaculture, Pukyong National University) ;
  • Choi, Youn Hee (Department of Marine Bio-Materials & Aquaculture, Pukyong National University) ;
  • Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Marine Bio-Materials & Aquaculture, Pukyong National University)
  • Received : 2020.08.22
  • Accepted : 2020.09.17
  • Published : 2020.09.30

Abstract

Changes of gonadal morphology and mRNA expression patterns of vitellogenin were investigated in Siberian sturgeon Acipenser baerii (Chondrostei) during its early gonadal maturation period. Early differentiations and morphological transitions of both ovaries and testes appeared to occur actively until the age of 3 years, however from then on, the maturation patterns to full maturity were largely gender-dependent, in which males showed a faster progression of maturation than did females while females experienced a steady-state progress with a lagged interval before entering the final maturation. Expression of vitellogenin mRNAs are closely correlated with transitional patterns of gonadal appearances. In both females and males, hepatic mRNA levels of vitellogenin exponentially increased in the earliest interval (up to 1-year-old). However, in subsequent periods, vitellogenin expression in females continued to increase with age, whereas in males, the expression stabilized at a younger age. Nevertheless, at the age older than or equal to 7-year-old, fully matured individuals showed a quite low level of vitellogenin expression in both females and males. Collectively, results from this study could be useful as a fundamental guideline to address the gonad maturation of this sturgeon species, which is helpful for making practical decisions about farming practices and management for caviar production on local sturgeon farms.

Keywords

References

  1. Amberg JJ, Goforth R, Stefanavage T, Sepulveda MS. 2010. Sexually dimorphic gene expression in the gonad and liver of shovelnose sturgeon (Scaphirhynchus platorynchus). Fish Physiol. Biochem. 36:923-932. https://doi.org/10.1007/s10695-009-9369-8
  2. Arukwe A and Goksoyr A. 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2:4. https://doi.org/10.1186/1476-5926-2-4
  3. Birstein VJ, Hanner R, DeSalle R. 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ. Biol. Fishes 48:127-155. https://doi.org/10.1023/A:1007366100353
  4. Chapman FA and Park C. 2005. Comparison of sutures used for wound closure in sturgeon following a gonad biopsy. N. Am. J. Aquac. 67:98-101. https://doi.org/10.1577/A04-046.1
  5. Chebanov MS and Galich EV. 2011. Sturgeon hatchery manual. FAO, Ankara, pp. 37-134.
  6. Doukakis P, Pikitch EK, Rothschild A, DeSalle R, Amato G, Kolokotronis SO. 2012. Testing the effectiveness of an international conservation agreement: marketplace forensics and CITES caviar trade regulation. PLoS One 7:e40907. https://doi.org/10.1371/journal.pone.0040907
  7. Dzyuba B, Cosson J, Dzyuba V, Fedorov P, Bondarenko O, Rodina M, Linhart O, Shelton WL, Boryshpolets S. 2017. Sperm maturation in sturgeon (Actinopterygii, Acipenseriformes): a review. Theriogenology 97:134-138. https://doi.org/10.1016/j.theriogenology.2017.04.034
  8. Fajkowska M, Rzepkowska M, Adamek D, Ostaszewska T, Szczepkowski M. 2016. Expression of dmrt1 and vtg genes during gonad formation, differentiation and early maturation in cultured Russian sturgeon Acipenser gueldenstaedtii. J. Fish Biol. 89:1441-1449. https://doi.org/10.1111/jfb.12992
  9. Gisbert E and Ruban GI. 2003. Ontogenetic behavior of Siberian sturgeon, Acipenser baerii : a synthesis between laboratory tests and field data. Environ. Biol. Fishes 67:311-319. https://doi.org/10.1023/A:1025851502232
  10. Grandi G, Astolfi G, Chicca M, Pezzi M. 2018. Ultrastructural investigations on spermatogenesis and spermatozoan morphology in the endangered Adriatic sturgeon, Acipenser naccarii (Chondrostei, Acipenseriformes). J. Morphol. 279:1376-1396. https://doi.org/10.1002/jmor.20847
  11. Hara A, Hiramatsu N, Fujita T. 2016. Vitellogenesis and choriogenesis in fishes. Fish. Sci. 82:187-202. https://doi.org/10.1007/s12562-015-0957-5
  12. Jackson K, Hurvitz A, Din SY, Goldberg D, Pearlson O, Degani G, Levavi-Sivan B. 2006. Anatomical, hormonal and histological descriptions of captive Russian sturgeon (Acipenser gueldenstaedtii) with intersex gonads. Gen. Comp. Endocrinol. 148:359-367. https://doi.org/10.1016/j.ygcen.2006.04.008
  13. Keyvanshokooh S and Gharaei A. 2010. A review of sex determination and searches for sex-specific markers in sturgeon. Aquac. Res. 41:e1-e7. https://doi.org/10.1111/j.1365-2109.2009.02463.x
  14. Kim CH, Kim EJ, Nam YK. 2019a. Chondrostean sturgeon hepcidin: an evolutionary link between teleost and tetrapod hepcidins. Fish Shellfish Immunol. 88:117-125. https://doi.org/10.1016/j.fsi.2019.02.045
  15. Kim CH, Kim EJ, Nam YK. 2019b. Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii ), a primitive chondrostean fish species. Fish Shellfish Immunol. 93:161-173. https://doi.org/10.1016/j.fsi.2019.07.040
  16. Kim EJ and Nam YK. 2018. Anesthetic protocol for microinjection-related handling of Siberian sturgeon (Acipenser baerii ; Acipenseriformes) prolarvae. PLoS One 13:e0209928. https://doi.org/10.1371/journal.pone.0209928
  17. Le Menn F, Benneteau-Pelissero C, Le Menn R. 2018. An updated version of histological and ultrastructural studies of oogenesis in the Siberian sturgeon Acipenser baerii. In: Williot P, Nonnotte G, Vizziano-Cantonnet D, Chebanov M (Eds.), The Siberian Sturgeon (Acipenser baerii , Brandt, 1869, vol 1, Springer, Cham, pp. 279-305.
  18. Ma J, Zhang T, Zhuang P, Yan SW, Zhang LZ, Tian MP, Gao LJ. 2011. The role of lipase in blood lipoprotein metabolism and accumulation of lipids in oocytes of the Siberian sturgeon Acipenser baerii during maturation. J. Appl. Ichthyol. 27:246-250. https://doi.org/10.1111/j.1439-0426.2010.01658.x
  19. Matsche MA, Rosemary KM, Brundage HM III, O'Herron JC II. 2013. Reproductive demographics, intersex, and altered hormone levels in shortnose sturgeon, Acipenser brevirostrum, from Delaware River, USA. J. Appl. Ichthyol. 29:299-309. https://doi.org/10.1111/jai.12133
  20. McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ, Alonso-Fernandez A, Basilone G. 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16:23-57. https://doi.org/10.1111/faf.12043
  21. Memis D, Yamaner G, Tosun DD, Eryalcin KM, Chebanov M, Galich E. 2016. Determination of sex and gonad maturity in sturgeon (Acipenser gueldenstaedtii ) using ultrasound technique. J. Appl. Aquac. 28:252-259. https://doi.org/10.1080/10454438.2016.1174181
  22. Nagahama Y and Yamashita M. 2008. Regulation of oocyte maturation in fish. Dev. Growth Differ. 2008;50 Suppl 1:S195-S219. https://doi.org/10.1111/j.1440-169X.2008.01019.x
  23. Park C, Lee SY, Kim DS, Nam YK. 2013a. Embryonic development of Siberian sturgeon Acipenser baerii under hatchery conditions: an image guide with embryological descriptions. Fish. Aquat. Sci. 16:15-23. https://doi.org/10.5657/FAS.2013.0015
  24. Park C, Lee SY, Kim DS, Nam YK. 2013b. Effects of incubation temperature on egg development, hatching and pigment plug evacuation in farmed Siberian sturgeon Acipenser baerii. Fish. Aquat. Sci. 16:25-34. https://doi.org/10.5657/FAS.2013.0025
  25. Reading BJ, Andersen LK, Ryu YW, Mushirobira Y, Todo T, Hiramatsu N. 2018. Oogenesis and egg quality in finfish: yolk formation and other factors influencing female fertility. Fishes 3:45. https://doi.org/10.3390/fishes3040045
  26. Ryu JH, Kim MS, Kang JH, Kim DH, Nam YK, Gong SP. 2018. Derivation of the clonal-cell lines from Siberian sturgeon (Acipenser baerii) head-kidney cell lines and its applicability to foreign gene expression and virus culture. J. Fish Biol. 92:1273-1289. https://doi.org/10.1111/jfb.13585
  27. Rzepkowska M, Ostaszewska T, Gibala M, Roszko ML. 2014. Intersex gonad differentiation in cultured Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon. Biol. Reprod. 90:31. https://doi.org/10.1095/biolreprod.113.112813
  28. Salmela H, Amdam GV, Freitak D. 2015. Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog. 11:e1005015. https://doi.org/10.1371/journal.ppat.1005015
  29. Samarin AM, Samarin AM, Policar T. 2019. Cellular and molecular changes associated with fish oocyte ageing. Rev. Aquacult. 11:619-630. https://doi.org/10.1111/raq.12249
  30. Schmittgen TD and Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3:1101-1108. https://doi.org/10.1038/nprot.2008.73
  31. Schulz RW, de Franca LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T. 2010. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165:390-411. https://doi.org/10.1016/j.ygcen.2009.02.013
  32. Simide R and Gaillard S. 2018. Evolution of molecular investigations on sturgeon sex determination and most recent developments in DNA methylation with a focus on the Siberian sturgeon. In: Williot P, Nonnotte G, Vizziano-Cantonnet D, Chebanov M (Eds.), The Siberian Sturgeon (Acipenser baerii , Brandt, 1869), vol 1, Springer, Cham, pp. 71-91.
  33. Sun C and Zhang S. 2015. Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish. Nutrients 7:8818-8829. https://doi.org/10.3390/nu7105432
  34. Tong Z, Li L, Pawar R, Zhang S. 2010. Vitellogenin is an acute phase protein with bacterial-binding and inhibiting activities. Immunobiology 215:898-902. https://doi.org/10.1016/j.imbio.2009.10.001
  35. Webb MAH and Doroshov SI. 2011. Importance of environmental endocrinology in fisheries management and aquaculture of sturgeons. Gen. Comp. Endocrinol. 170:313-321. https://doi.org/10.1016/j.ygcen.2010.11.024
  36. Webb MAH, Van Eenennaam JP, Crossman JA, Chapman FA. 2019. A practical guide for assigning sex and stage of maturity in sturgeons and paddlefish. J. Appl. Ichthyol. 35;169-186. https://doi.org/10.1111/jai.13582
  37. Williot P and Chebanov M. 2018. Reproductive cycles in sturgeons with a special focus on the farmed Siberian sturgeon. In: Williot P, Nonnotte G, Chebanov M (Eds.), The Siberian Sturgeon (Acipenser baerii , Brandt, 1869), vol 2, Springer, Cham, pp. 3-12.
  38. Zhang S, Wang S, Li H, Li L. 2011b. Vitellogenin, a multivalent sensor and an antimicrobial effector. Int. J. Biochem. Cell Biol. 43:303-305. https://doi.org/10.1016/j.biocel.2010.11.003
  39. Zhang Y, Qu Q, Sun D, Liu X, Suo L, Zhang Y. 2011a. Vitellogenin in Amur sturgeon (Acipenser schrenckii): induction, purification and changes during the reproductive cycle. J. Appl. Ichthyol. 27:660-665. https://doi.org/10.1111/j.1439-0426.2011.01698.x
  40. Zhang Z, Hu J, An W, Jin F, An L, Tao S, Chen J. 2005. Induction of vitellogenin mRNA in juvenile Chinese sturgeon (Acipenser sinensis Gray) treated with 17beta-estradiol and 4-nonylphenol. Environ. Toxicol. Chem. 24:1944-1950. https://doi.org/10.1897/04-436R.1
  41. Zhu Y, Wu J, Leng X, Du H, Wu J, He S, Luo J, Liang X, Liu H, Wei Q, Tan Q. 2020. Metabolomics and gene expressions revealed the metabolic changes of lipid and amino acids and the related energetic mechanism in response to ovary development of Chinese sturgeon (Acipenser sinensis). PLoS One 15:e0235043. https://doi.org/10.1371/journal.pone.0235043