DOI QR코드

DOI QR Code

The effect of jaw's curvature on Brazilian tensile strength of rocks

  • Received : 2020.04.20
  • Accepted : 2020.09.28
  • Published : 2020.10.25

Abstract

This paper investigates the effect of the jaw's curvature, also known by contact angle and jaw arc central angle (2α), of the Brazilian test apparatus on indirect tensile strength of various rock types. That's why, ten rock samples including limestone, marble, skarn, granite, diorite, and granodiorite were collected from some quarries in different provinces of Iran. Petrographic, mineralogical and textural investigations were performed using thin section analyses. Physical properties of the selected rock samples namely dry and saturated unit weights, porosity, water absorption, and specific gravity were determined for the rock samples. In addition, Brazilian tensile strength at different 2α angles (i.e., 2α = 0°, 10°, 15°, 20°, 45°, and 60°) were determined for the rocks in the laboratory. Results show that the parameter for the rocks is between 3.81 MPa at 2α=0° and 54.76 MPa at 2α=60°. This means that Brazilian tensile strength increased with increasing 2α angle from 0° to 60°. Also, it was found that the highest change rate of the Brazilian tensile strength occurs in range of 2α=15°-30° for most studied rock samples. In some tested samples, the parameter is decreased only at 2α = 60°. The values of Brazilian tensile strength of the rocks tested by flat and standard jaws are near to each other.

Keywords

Acknowledgement

The authors acknowledge the official supports of the Engineering Geology and Rock Mechanics Laboratory of Damghan University for performing all laboratory tests of the research.

References

  1. Aliabadian, Z., Zhao, G.F. and Russell, A.R. (2019), "Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test", Int. J. Rock Mech. Min. Sci., 122, 104073. https://doi.org/10.1016/j.ijrmms.2019.104073.
  2. Anon, O. (1979), "Classification of rocks and soils for engineering geological mapping. Part 1: Rock and soil materials", Bull. Int. Assoc. Eng. Geol., 19, 355-371.
  3. Aonoa, Y., Tani, K., Okada, T. and Sakai, M. (2012). "Failure mechanism of the specimen in the splitting tensile strength test", Proceedings of the ISRM Regional Symposium-7th Asian Rock Mechanics Symposium, Seoul, Korea, October.
  4. ASTM (2008), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, in Annual Book of ASTM Standards, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  5. Barla, G. and Innaurato, N. (1973), "Indirect tensile testing of anisotropic rocks", Rock Mech., 5(4), 215-230. https://doi.org/10.1007/BF01301795.
  6. Brisevac, Z., Kujundzic, T. and Cajic, S. (2015), "Current cognition of rock tensile strength testing by Brazilian test", Rudarsko-geolosko-naftni zbornik, 30(2), 101-114. https://doi.org/10.17794/rgn.2015.2.2.
  7. Burkhardt, M., Kim, E. and Nelson, P.P. (2018), "EMI database analysis focusing on relationship between density and mechanical properties of sedimentary rocks", Geomech. Eng., 14(5), 491-498. https://doi.org/10.12989/gae.2018.14.5.491.
  8. Cai, M. (2010), "Practical estimates of tensile strength and the Hoek-Brown strength parameter mi of brittle rocks", Rock Mech. Rock Eng., 43(2), 167-184. https://doi.org/10.1007/s00603-009-0053-1.
  9. Carneiro, F. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, Sao Paulo, Brazil.
  10. Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010.
  11. Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007.
  12. Fairhurst, C. (1964), "On the validity of the 'Brazilian'test for brittle materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1(4), 535-546. https://doi.org/10.1016/0148-9062(64)90060-9.
  13. Fereidooni, D. (2016), "Determination of the geotechnical characteristics of hornfelsic rocks with a particular emphasis on the correlation between physical and mechanical properties", Rock Mech. Rock Eng., 49(7), 2595-2608. https://doi.org/10.1007/s00603-016-0930-3.
  14. Garcia, V.J., Marquez, C.O., Zuniga-Suarez, A.R., Zuniga-Torres, B.C. and Villalta-Granda, L.J. (2017), "Brazilian test of concrete specimens subjected to different loading geometries: Review and new insights", Int. J. Concrete Struct. Mater., 11(2), 343-363. https://doi.org/10.1007/s40069-017-0194-7.
  15. Hondros, G. (1959), "The evaluation of Poisson's ratio and the modulus of materials of low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete", Australian J. Appl. Sci., 10(3), 243-268.
  16. Huang, Y.H., Yang, S.Q. and Zhang, C.S. (2017), "Strength failure behavior of granite containing two holes under Brazilian test", Geomech. Eng., 12(6), 919-933. https://doi.org/10.12989/gae.2017.12.6.919.
  17. ISRM (1977), Suggested Methods for Determining Tensile Strength of Rock Materials, Commission on Standardization of Laboratory Field Tests, Committee on Laboratory Tests.
  18. ISRM (2007), The Blue Book-The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Compilation Arranged by the ISRM Turkish National Group, Kazan Offset Press, Ankara, Turkey.
  19. Istvan, J., Evans, L., Weber, J. and Devine, C. (1997), "Rock mechanics for gas storage in bedded salt caverns", Int. J. Rock Mech. Min. Sci., 34(3-4), 142. https://doi.org/10.1016/S1365-1609(97)00108-1.
  20. Jaeger, J.C., Cook, N.G. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, John Wiley & Sons.
  21. Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol., 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014.
  22. Khanlari, G.R., Heidari, M., Sepahi-Gero, A.A. and Fereidooni, D. (2014), "Determination of geotechnical properties of anisotropic rocks using some index tests", Geotech. Test. J., 37(2), 242-254. https://doi.org/10.1520/GTJ20130078.
  23. Komurlu, E. and Kesimal, A. (2015), "Evaluation of indirect tensile strength of rocks using different types of jaws", Rock Mech. Rock Eng., 48(4), 1723-1730. https://doi.org/10.1007/s00603-014-0644-3.
  24. Kourkoulis, S., Markides, C.F. and Chatzistergos, P. (2013a), "The standardized Brazilian disc test as a contact problem", Int. J. Rock Mech. Min. Sci., 57, 132-141. https://doi.org/10.1016/j.ijrmms.2012.07.016.
  25. Kourkoulis, S., Markides, C.F. and Hemsley, J. (2013b), "Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test", Acta Mechanica, 224(2), 255-268. https://doi.org/10.1007/s00707-012-0756-3.
  26. Lanaro, F., Sato, T. and Stephansson, O. (2009), "Microcrack modelling of Brazilian tensile tests with the boundary element method", Int. J. Rock Mech. Min. Sci., 46(3), 450-461. https://doi.org/10.1016/j.ijrmms.2008.11.007.
  27. Li, D. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: Review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7.
  28. Ma, Y. and Huang, H. (2018), "DEM analysis of failure mechanisms in the intact Brazilian test", Int. J. Rock Mech. Min. Sci., 102, 109-119. https://doi.org/10.1016/j.ijrmms.2017.11.010.
  29. Markides, C.F. and Kourkoulis, S. (2016), "The influence of jaw's curvature on the results of the Brazilian disc test", J. Rock Mech. Geotech. Eng., 8(2), 127-146. https://doi.org/10.1016/j.jrmge.2015.09.008.
  30. Markides, C.F., Pazis, D. and Kourkoulis, S. (2010), "Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load", Int. J. Rock Mech. Min. Sci., 47(2), 227-237. https://doi.org/10.1016/j.ijrmms.2009.11.006.
  31. Markides, C.F., Pazis, D. and Kourkoulis, S. (2012), "The Brazilian disc under non-uniform distribution of radial pressure and friction", Int. J. Rock Mech. Min. Sci., 50, 47-55. https://doi.org/10.1016/j.ijrmms.2011.12.012.
  32. Mellor, M. and Hawkes, I. (1971), "Measurement of tensile strength by diametral compression of discs and annuli", Eng. Geol., 5(3), 173-225. https://doi.org/10.1016/0013-7952(71)90001-9.
  33. Mishra, D.A. and Basu, A. (2012), "Use of the block punch test to predict the compressive and tensile strengths of rocks", Int. J. Rock Mech. Min. Sci., 51, 119-127. https://doi.org/10.1016/j.ijrmms.2012.01.016.
  34. Muskhelishvili, N. (1963), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands.
  35. Perras, M.A. and Diederichs, M.S. (2014), "A review of the tensile strength of rock: Concepts and testing", Geotech. Geol. Eng., 32(2), 525-546. https://doi.org/10.1007/s10706-014-9732-0.
  36. Rocco, C., Guinea, G., Planas, J. and Elices, M. (2001), "Review of the splitting-test standards from a fracture mechanics point of view", Cement Concrete Res., 31(1), 73-82. https://doi.org/10.1016/S0008-8846(00)00425-7.
  37. Seto, M., Nag, D.K., Vutukuri, V. and Katsuyama, K. (1997), "Effect of chemical additives on the strength of sandstone", Int. J. Rock Mech. Min. Sci., 34(3-4), 280. https://doi.org/10.1016/S1365-1609(97)00283-9.
  38. Tan, X., Konietzky, H., Fruhwirt, T. and Dan, D.Q. (2015), "Brazilian tests on transversely isotropic rocks: Laboratory testing and numerical simulations", Rock Mech. Rock Eng., 48(4), 1341-1351. https://doi.org/10.1007/s00603-014-0629-2.
  39. Tutmez, B. (2017), "Comparison of measurement uncertainty calculation methods on example of indirect tensile strength measurement", Geomech. Eng., 12(6), 871-882. https://doi.org/10.12989/gae.2017.12.6.871.
  40. Wei, J., Niu, L., Song, J.J. and Xie, L. (2019), "Estimation of rock tensile and compressive moduli with Brazilian disc test", Geomech. Eng., 19(4), 353-360. https://doi.org/10.12989/gae.2019.19.4.353.
  41. Yousefi, H. (2019), "Investigating the influence of effective parameters on Brazilian tensile strength of rocks with emphasis on jaw arch central angle of the test", M.Sc. Thesis, Damghan University, Damghan, Iran.