참고문헌
- Ahmed, R. A., Fenjan, R. M., and Faleh, N. M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180.-https://doi.org/10.12989/gae.2019.17.2.175.
- Ansari, R., and Ajori, S. (2014), "Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes", Physics Lett. A, 378(38-39), 2876-2880. https://doi.org/10.1016/j.physleta.2014.08.006
- Ansari, R., and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80(2), 021006. https://doi.org/10.1142/S179329201250018X.
- Arani, A. J., and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
- Arani, Jafarian A., and Kolahchi R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
- Batou, B., Nebab, M., Bennai, R., Atmane, H. A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
- Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213
- Benguediab, S., Tounsi, A., Ziadour, and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Composites Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
- Bilouei, B. S., Kolahchi, R., and Bidgoli, M. R. (2016), "Buckling of concrete columns retrofitted with "Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
- Bilouei, Safari B, Kolahchi, R., and Bidgoli, M. R. (2016), " Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053- 1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 1-15. https://doi.org/10.1080/15440478.2018.1503129
- Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", CMES, 104, 305-327.
- Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, Germany.
- Faleh, N. M., Fenjan, R. M., and Ahmed, R. A. (2020), "Forced Vibrations of Multi-phase Crystalline Porous Shells Based on Strain Gradient Elasticity and Pulse Load Effects", J. Vib. Eng. Technol., 1-9.- 10.1007/s42417-020-00203-8.
- Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., https://doi.org/10.1049/mnl.2019.0203.
- Fenjan, R. M., Ahmed, R. A., Alasadi, A. A., and Faleh, N. M. (2019c), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled. Syst. Mech., 8(3), 247-257.
- Fenjan, R. M., Ahmed, R. A., Alasadi, A. A., and Faleh, N. M. (2019b), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities. Coupled. Syst. Mech., 8(3), 247-257.- https://doi.org/10.12989/csm.2019.8.3.247.
- Fenjan, R. M., Ahmed, R. A., and \Faleh, N. M. (2019a), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314.- https://doi.org/10.12989/aas.2019.6.4.297.
- Flugge, S., (1973), Stresses in Shells, Springer 2nd Edition, Germany.
- Gao, Y., and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E, 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
- Georgantzinos, S. K., Giannopoulos, G. I. and Anifantis, N. K. (2009), "An efficient numerical model for vibration analysis of single-walled carbon nanotubes", Comput/ Mech., 43(6), 731- 741. https://doi.org/10.1007/s00466-008-0341-8
- Ghadiri, M., Ebrahimi, F., Salari, E., Hosseini, S. A. H., and Shaghaghi, G. R. (2015), "Electro-thermo-mechanical vibration analysis of embedded single-walled boron nitride nanotubes based on nonlocal third-order beam theory", J. Multiscale Comput. Eng., 13(5),
- Ghavanloo, E., Daneshmand, F., and Rafiei, M. (2010), "Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscous elastic Winkler foundation", Physica E, 42, 2218-2224. https://doi.org/10.1016/j.physe.2010.04.024.
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67(1),1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
- Goncalves, P.B., DA silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Braz. Soc. Mech. Sci. Eng, 28(3), 331-333. http://dx.doi.org/10.1590/S1678-58782006000300011.
- Gupta, S.S., Bosco, F.G., and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
- Hayati, H., Hosseini, S. A., and Rahmani, O. (2017), "Coupled twist-bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23(7), 2393-2401. https://doi.org/10.1007/s00542-016-2933-0
- He, X.Q., Kitipornchai, S., and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53, 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.
- Heydarpour, Y., Aghdam, M.M., and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
- Hsu, J. C., Chang, R. P., and Chang, W. J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Physics Letters A, 372(16), 2757- 2759. https://doi.org/10.1016/j.physleta.2008.01.007
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
- Hussain M., Naeem M. N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandwich Struct. Mater. https://doi.org/10.1177/1099636220906257
- Hussain, M., and Naeem, M., (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomaterials - Synthesis and Applications, Intechopen, United Kingdom.
- Hussain, M., and Naeem, M., (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality" IntechOpen. United Kingdom.
- Hussain, M., and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B, 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144
- Hussain, M., Naeem., M.N. 2017, "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017
- Hussain, M., Naeem., M.N., Shahzad, A., and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4). https://doi.org/10.1063/1.4979112.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0
- Kar, V. R., Panda, S. K., and Pandey, H. K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527
- Karami, H., and Farid, M. (2015), "A new formulation to study in-plane vibration of curved carbon nanotubes conveying viscous fluid", J. Vib. Control, 21(12), 2360-2371. https://doi.org/10.1177/1077546313511137
- Kiani, K. (2010), "Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects", Physica E, 42(9), 2391-2401. https://doi.org/10.1016/j.physe.2010.05.021
- Kocal, T., and Akbarov, S. D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71(5), 577-601. https://doi.org/10.12989/sem.2019.71.5.577
- Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
- Kolahchi, R., and Bidgoli, A. M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
- Kolahchi, R., and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dynam., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x
- Kolahchi, R., Hosseini, H., and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Kolahchi, R., Hosseini, H., Fakhar, M. H., Taherifar, R., and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042
- Kolahchi, R., Keshtegar, B., and Fakhar, M. H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandwich Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071
- Kolahchi, R., Safari, M., and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kolahchi, R., Zarei, M. S., Hajmohammad, M. H., and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates intebgrated with sensor and actuator based on refined zigzag theory", J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
- Kolahchi, R., Zarei, M. S., Hajmohammad, M. H., and Oskouei, A. N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Walled Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
- Lee, H. L., and Chang, W. J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Physica E, 41(4), 529-532. https://doi.org/10.1016/j.physe.2008.10.002
- Loy, C.T., Lam, K.L., Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.1155/1997/538754
- Loy, C.T., Lam, K.Y., and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int J Mech Sci, 1, 309- 324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Madani, H., Hosseini, H., and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mohammadimehr, M., and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309
- Mohsen, M., and Eyvazian A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs." Steel Compos. Struct. 34, no. 2 (2020): 289. https://doi.org/10.12989/scs.2020.34.2.289
- Motezaker M and Eyvazian A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486 https://doi.org/10.12989/sem.2020.73.5.481
- Motezaker, M., and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer" Computers and Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361
- Motezaker, M., and Kolahchi, R. (2017b), "Seismic response of SiO 2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Computers and Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745
- Motezaker, M., Jamali, M., and Kolahchi, R. (2020), Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. Journal of Computational and Applied Mathematics, 369, 112625. https://doi.org/10.1016/j.cam.2019.112625
- Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Physica E, 43, 1015-1020. https://doi.org/10.1016/j.physe.2010.12.004
- Narwariya, M., Choudhury, A. and Sharma, A.K (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132 https://doi.org/10.12989/ACD.2018.3.2.113
- Natsuki T, Qing. QN., and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl Phys., 101(3), 034319-034319-5. https://doi.org/10.1063/1.2432025.
- O'connell, M. J. (2006), Carbon nanotubes: properties and applications. CRC press.
- Paliwal, D.N., Kanagasabapathy, H., and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
- Peddieson, J., Buchanan, G.R., and McNitt, R.P. (2003), "Application of Nonlocal Continuum Models to Nanotechnology", Int. J. Eng. Sei., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Rouhi, H., Ansari, R., Arash, B. (2012), "Vibration Analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int J. Mech. Sei., 37, 91-105.
- Ru, C. (2004), "Elastic models for carbon nanotubes", Encyclopedia of Nanoscience and Nanotechnology, 2(744), American Scientific Publishers, USA. 731-744.
- Sadoughifar, A., Farhatnia, F., Izadinia, M., and Talaeetaba, S. B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225. https://doi.org/10.12989/sem.2020.73.3.225
- Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Advances, 9(4), https://doi.org/10.1016/0263-8223(94)00068-9.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.33.6.805.
- Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordejon, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Physical Review B, 59(19), 12678. https://doi.org/10.1103/PhysRevB.59.12678
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
- Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S., and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407. https://doi.org/10.12989/sem.2020.73.4.407
- Sharma, P., Singh, R., Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406219888234.
- Shen, (2009), H.S. "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.12989/scs.2011.11.1.059
- Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017
- Swain, A., Roy, T., and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. And Appl. Res. in Mech. Eng., 2, 129-133.
- Torabi, J., and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313
- Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proceedings of Royal Society A, 465. https://doi.org/10.1098/rspa.2008.0394
- Wang, J., and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
- Wang, Q., and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/16/1/022.
- Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. 10.1115/1.2793133.
- Yang, J., Ke, L. L.,and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
- Yazid M, Heireche H., Tounsi A., Bousahla A.A., and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Yoon, J., Ru, C.Q., and Mioduchowski, A. (2002), "Noncoaxial resonance of an isolated multiwall carbon nanotube", Physical Review B., 66(23), 2334021-2334024. https://doi.org/10.1103/PhysRevB.66.233402.
- Zamanian M, Kolahchi, R, and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
- Zamanian, M., Kolahchi, R., and Bidgoli, M. R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
- Zhang, J. F., Liu, Q. S., Ge, Y. J., and Zhao, L. (2019), "Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells", Struct. Eng. Mech., 72(5), 541. https://doi.org/10.12989/sem.2019.72.5.541
- Zou, R.D., and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Walled Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.