DOI QR코드

DOI QR Code

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili (School of Civil Engineering, Guangzhou University) ;
  • Zheng, Tongyi (School of Civil Engineering, Guangzhou University) ;
  • Tong, Huawei (School of Civil Engineering, Guangzhou University) ;
  • Zhou, Yun (School of Civil Engineering, Guangzhou University) ;
  • Lu, Zhongrong (Department of Applied Mechanics, Sun Yat-sen University)
  • Received : 2020.02.12
  • Accepted : 2020.05.18
  • Published : 2020.10.10

Abstract

In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

Keywords

Acknowledgement

This work is supported by a research grant from the National Natural Science Foundation of China (51808147).

References

  1. Artar, M. and Daloglu, A.T. (2019), "Optimum design of steel space truss towers under seismic effect using Jaya algorithm", Struct. Eng. Mech., 71(6), 1-12. http://dx.doi.org/ 10.12989/sem.2019.71.1.001.
  2. Bajric, A. and Hogsberg, J. (2018), "Estimation of hysteretic damping of structures by stochastic subspace identification", Mech. Syst. Signal Proc., 105, 36-50. http://dx.doi.org/10.1016/j.ymssp.2017.11.042.
  3. Chang, C.C. and Shi, Y. (2010), "Identification of time-varying hysteretic structures using wavelet multiresolution analysis", Int. J. Non-Linear Mech., 45(1), 21-34. http://dx.doi.org/10.1016/j.ijnonlinmec.2009.08.009.
  4. Ding, Z., Li, J., Hao, H. and Lu, Z.R. (2019), "Nonlinear hysteretic parameter identification using an improved tree-seed algorithm", Swarm Evol. Comput., 46, 69-83. http://dx.doi.org/10.1016/j.swevo.2019.02.005.
  5. Dong, H., Han, Q. and Du, X. (2019), "Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs", Struct. Eng. Mech., 71(6), 683-697. http://dx.doi.org/10.12989/sem.2019.71.6.683.
  6. Jain, M., Singh, V. and Rani, A. (2019) "A novel nature-inspired algorithm for optimization: Squirrel search algorithm", Swarm Evol. Comput., 44, 148-175. http://dx.doi.org/ 10.1016/j.swevo.2018.02.013.
  7. Korayem M.H. and Homayouni, A. (2017) "The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory", Eur. J. Mech. A-Solids, 61, 59-72. http://dx.doi.org/10.1016/j.euromechsol.2016.08.013.
  8. Korayem, M.H. and Sadeghzadeh, S. (2009) "A new modeling and compensation approach for creep and hysteretic loops in SPM's piezotubes", Int. J. Adv. Manuf. Technol., 44(7-8), 1133-1143. http://dx.doi.org/10.1007/s00170-009-1926-x.
  9. Korayem M.H., Sadeghzadeh, S. and Rahneshin, V. (2012) "A new multiscale methodology for modeling of single and multi-body solid structures", Comput. Mater. Sci., 63, 1-11. http://dx.doi.org/10.1016/j.commatsci.2012.05.059.
  10. Li, Z. and Shu, G. (2019), "Hysteresis characterization and identification of the normalized Bouc-Wen model", Struct. Eng. Mech., 70(2), 209-219. http://dx.doi.org/10.12989/sem.2019.70.2.209.
  11. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech., 71, 342-9. http://dx.doi.org/10.1007/978-94-010-0179-3_22.
  12. Mahdavi, S., Rahnamayan, S. and Deb, K. (2018), "Opposition based learning: A literature review", Swarm Evol. Comput., 39, 1-23. http://dx.doi.org/10.1016/j.swevo.2017.09.010.
  13. Niola, V., Palli, G., Strano, S. and Terzo, M. (2019), "Nonlinear estimation of the Bouc-Wen model with parameter boundaries: Application to seismic isolators", Comput. Struct., 222, 1-9. http://dx.doi.org/10.1016/j.compstruc.2019.06.006.
  14. Omrani, R., Hudson, R.E. and Taciroglu, E. (2012), "Parametric identification of nondegrading hysteresis in a laterally and torsionally coupled building using an unscented Kalman filter", J. Eng. Mech., 139(4), 452-468. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000498.
  15. Ortiz, G.A., Alvare,z D.A., Bedoya-Ruiz, D. (2013), "Identification of Bouc-Wen type models using multi-objective optimization algorithms", Comput. Struct. 114-115, 121-132. http://dx.doi.org/10.1016/j.compstruc.2012.10.016
  16. Quaranta, G., Marano, G.C., Greco, R. and Monti, G. (2014), "Parametric identification of seismic isolators using differential evolution and particle swarm optimization", Appl. Soft. Comput., 22, 458-464. http://dx.doi.org/10.1016/j.asoc.2014.04.039.
  17. Shu, G. and Li, Z. (2017), "Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers", Earthq. Struct., 13(4), 397-407. https://doi.org/10.12989/EAS.2017.13.4.397
  18. Tran, C.T.N. and Li, B. (2018), "Seismic performance of RC short columns with light transverse reinforcement", Struct. Eng. Mech., 67(1), 93-104. http://dx.doi.org/ 10.12989/sem.2018.67.1.093.
  19. Worden, K. and Manson, G. (2012), "On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification", Mech. Syst. Signal Proc., 29, 201-212. http://dx.doi.org/10.1016/j.ymssp.2012.01.004.
  20. Zheng, T., Liu, J., Luo, W. and Lu, Z. (2018), "Structural damage identification using cloud model based fruit fly optimization algorithm", Struct. Eng. Mech., 67(3), 245-254. http://dx.doi.org/10.12989/sem.2018.67.3.245.
  21. Zheng, T., Luo, W., Hou, R., Lu, Z. and Cui, J. (2019), "A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification", Eng. Optimiz., 1-24. http://dx.doi.org/10.1080/0305215X.2019.1668935.
  22. Zhou, Y., Lu, D. and Zhang, M. (2017), "Study on mechanical properties of lead-filled steel tube damper", China Civ. Eng. J., 50(1), 46-52. (in Chinese)